Deadlocks In Apache Ignite

Prachi Garg discusses Deadlock-Free Transactions in Apache Ignite:

When transactions in Ignite are performed with concurrency mode -OPTIMISTIC and isolation level -SERIALIZABLE, locks are acquired during transaction commit with an additional check allowing Ignite to avoid deadlocks. This also prevents cache entries from being locked for extended periods and avoids “freezing” of the whole cluster, thus providing high throughput. Furthermore, during commit, if Ignite detects a read/write conflict or a lock conflict between multiple transactions, only one transaction is allowed to commit. All other conflicting transactions are rolled back and an exception is thrown, as explained in the section below.

This sounds pretty similar to how SQL Server’s In-Memory OLTP works.

Related Posts

Replicating Data In HDFS Between Clusters

Murali Ramasami and Niru Anisetti have an article showing how to use the Hortonworks Data Lifecycle Manager to set up replication between two Hadoop clusters: Data Lifecycle Manager (DLM) delivers on the promise of location-agnostic, secure replication by encapsulating and copying data seamlessly across physical private storage and public cloud environments. This empowers businesses to […]

Read More

Installing Confluent Platform On Windows

Niels Berglund shows how to install Confluent Platform (the Confluent branded version of Apache Kafka) on a Windows machine using the Windows Subsystem for Linux: WSL is primarily aimed at developers, and it allows you to run Linux environments directly on Windows in a native format and without the overhead of a virtual machine. Let us […]

Read More


September 2016
« Aug Oct »