Clickstream Anomaly Detection

Chris Marshall shows how to perform anomaly detection using AWS Kinesis Analytics:

The RANDOM_CUT_FOREST function greatly simplifies the programming required for anomaly detection.  However, understanding your data domain is paramount when performing data analytics.  The RANDOM_CUT_FOREST function is a tool for data scientists, not a replacement for them.  Knowing whether your data is logarithmic, circadian rhythmic, linear, etc. will provide the insights necessary to select the right parameters for RANDOM_CUT_FOREST.  For more information about parameters, see the RANDOM_CUT_FOREST Function.

Fortunately, the default values work in a wide variety of cases. In this case, use the default values for all but the subSampleSize parameter.  Typically, you would use a larger sample size to increase the pool of random samples used to calculate the anomaly score; for this post, use 12 samples so as to start evaluating the anomaly scores sooner.

Your SQL query outputs one record every ten seconds from the tumbling window so you’ll have enough evaluation values after two minutes to start calculating the anomaly score.  You are also using a cutoff value where records are only output to “DESTINATION_SQL_STREAM” if the anomaly score from the function is greater than 2 using the WHERE clause. To help visualize the cutoff point, here are the data points from a few runs through the pipeline using the sample Python script:

This kind of scenario is pretty cool—you could also do things like detecting service outages in streams (fewer than X events in a window, where X is some very small number relative to your overall data) or changes in advertising campaigns.

Related Posts

Building TensorFlow Neural Networks On Spark With Keras

Jules Damji has an example of using the PyCharm IDE to use Keras to build TensorFlow neural network models on the Databricks MLflow library: Our example in the video is a simple Keras network, modified from Keras Model Examples, that creates a simple multi-layer binary classification model with a couple of hidden and dropout layers and […]

Read More

Hortonworks Data Platform 3.0 Released

Saumitra Buragohain, et al, announce the newest version of the Hortonworks Data Platform: Highlighted Apache Hive features include: Workload management for LLAP:  You can assign resource pools within LLAP pool and allocate resources on a per user or per group basis. This enables support for large multi-tenant deployments. ACID v2 and ACID on by default:  We are […]

Read More

Categories

September 2016
MTWTFSS
« Aug Oct »
 1234
567891011
12131415161718
19202122232425
2627282930