Trained Python Models

Koos van Strien wants to bring a trained Python model into Azure ML:

The path of bringing a trained model from the local Python/Anaconda environment towards cloud Azure ML is globally as follows:

  1. Export the trained model

  2. Zip the exported files

  3. Upload to the Azure ML environment

  4. Embed in your Azure ML solution

Click through to see the details.  Koos did a great job making it look easy.

Related Posts

Comparing TensorFlow Versus PyTorch

Anirudh Rao compares PyTorch to TensorFlow: For small-scale server-side deployments both frameworks are easy to wrap in e.g. a Flask web server. For mobile and embedded deployments, TensorFlow works really well. This is more than what can be said of most other deep learning frameworks including PyTorch. Deploying to Android or iOS does require a non-trivial amount of work in TensorFlow. You don’t have to rewrite the entire inference portion of your model in Java or C++. […]

Read More

Looking At Databricks Cluster Pricing

Tristan Robinson takes a look at Azure Databricks pricing: The use of databricks for data engineering or data analytics workloads is becoming more prevalent as the platform grows, and has made its way into most of our recent modern data architecture proposals – whether that be PaaS warehouses, or data science platforms. To run any […]

Read More

Categories

September 2016
MTWTFSS
« Aug Oct »
 1234
567891011
12131415161718
19202122232425
2627282930