LIME

William Vorhies discusses a new technical paper on Local Interpretable Model-Agnostic Explanations:

What the model actually used for classification were these: ‘posting’, ‘host’, ‘NNTP’, ‘EDU’, ‘have’, ‘there’.  These are meaningless artifacts that appear in both the training and test sets and have nothing to do with the topic except that, for example, the word “posting” (part of the email header) appears in 21.6% of the examples in the training set but only two times in the class “Christianity.”

Is this model going to generalize?  Absolutely not.

An Example from Image Processing

In this example using Google’s Inception NN on arbitrary images the objective was to correctly classify “tree frogs”.  The classifier was correct in about 54% of cases but also interpreted the image as a pool table (7%) and a balloon (5%).

Looks like an interesting paper.  Click through for a link to the paper.

Related Posts

Working With Images In Spark 2.4

Tomas Nykodym and Weichen Xu give us an update on working with images in the most recent version of Apache Spark: An image data source addresses many of these problems by providing the standard representation you can code against and abstracts from the details of a particular image representation.Apache Spark 2.3 provided the ImageSchema.readImages API (see Microsoft’s post […]

Read More

Building A Convolutional Neural Network With TensorFlow

Anirudh Rao walks us through Convolutional Neural Networks in TensorFlow: What Are Convolutional Neural Networks? Convolutional Neural Networks, like neural networks, are made up of neurons with learnable weights and biases. Each neuron receives several inputs, takes a weighted sum over them, pass it through an activation function and responds with an output. The whole network has a loss function and all the tips and tricks that we developed for neural networks still apply on Convolutional […]

Read More

Categories

September 2016
MTWTFSS
« Aug Oct »
 1234
567891011
12131415161718
19202122232425
2627282930