LIME

William Vorhies discusses a new technical paper on Local Interpretable Model-Agnostic Explanations:

What the model actually used for classification were these: ‘posting’, ‘host’, ‘NNTP’, ‘EDU’, ‘have’, ‘there’.  These are meaningless artifacts that appear in both the training and test sets and have nothing to do with the topic except that, for example, the word “posting” (part of the email header) appears in 21.6% of the examples in the training set but only two times in the class “Christianity.”

Is this model going to generalize?  Absolutely not.

An Example from Image Processing

In this example using Google’s Inception NN on arbitrary images the objective was to correctly classify “tree frogs”.  The classifier was correct in about 54% of cases but also interpreted the image as a pool table (7%) and a balloon (5%).

Looks like an interesting paper.  Click through for a link to the paper.

Related Posts

Key Concepts of Convolutional Neural Networks

Srinija Sirobhushanam takes us through some of the key concepts around convolutional neural networks: How are convolution layer operations useful?CNN helps us look for specific localized image features like the edges in the image that we can use later in the network Initial layers to detect simple patterns, such as horizontal and vertical edges in […]

Read More

LSTM in Databricks

Vedant Jain shows us an example of solving a multivariate time series forecasting problem using LSTM networks: LSTM is a type of Recurrent Neural Network (RNN) that allows the network to retain long-term dependencies at a given time from many timesteps before. RNNs were designed to that effect using a simple feedback approach for neurons where the […]

Read More

Categories

September 2016
MTWTFSS
« Aug Oct »
 1234
567891011
12131415161718
19202122232425
2627282930