Data Quality

Kevin Feasel



Milind Paradkar discusses clean data:

We decided to do a quick check and took a sample of 143 stocks listed on the National Stock Exchange of India Ltd (NSE). For these stocks, we downloaded the 1-minute intraday data for the period 1/08/2016 – 19/08/2016. The aim was to check whether Google finance captured every 1-minute bar during this period for each of the 143 stocks.

NSE’s trading session starts at 9:15 am and ends at 15:30 pm IST, thus comprising of 375 minutes. For 14 trading sessions, we should have 5250 data points for each of these stocks. We wrote a simple code in R to perform the check.

I like this post because it exposes a data quality issue people don’t tend to think about very often:  when all of the data is legitimate and correctly-structured, but there are gaps in the available data set.  This is one of many data quality problems you’ll run into, so it may be important to have a plan in place in case you hit this scenario.

Related Posts

Interactive ggplot Plots with plotly

Laura Ellis takes us through ggplotly: As someone very interested in storytelling, ggplot2 is easily my data visualization tool of choice. It is like the Swiss army knife for data visualization. One of my favorite features is the ability to pack a graph chock-full of dimensions. This ability is incredibly handy during the data exploration […]

Read More

Goodbye, gather and spread; Hello pivot_long and pivot_wide

John Mount covers a change in tidyr which mimics Mount and Nina Zumel’s pivot_to_rowrecs and unpivot_to_blocks functions in the cdata package: If you want to work in the above way we suggest giving our cdatapackage a try. We named the functions pivot_to_rowrecs and unpivot_to_blocks. The idea was: by emphasizing the record structure one might eventually internalize what the transforms […]

Read More


September 2016
« Aug Oct »