The Spark Ecosystem

Kevin Feasel

2016-09-02

Spark

Frank Evans gives an overview of what the Apache Spark ecosystem looks like:

The built-in machine learning library in Spark is broken into two parts: MLlib and KeystoneML.

  • MLlib: This is the principal library for machine learning tasks. It includes both algorithms and specialized data structures. Machine learning algorithms for clustering, regression, classification, and collaborative filtering are available. Data structures such as sparse and dense matrices and vectors, as well as supervised learning structures that act like vectors but denote the features of the data set from its labels, are also available. This makes feeding data into a machine learning algorithm incredibly straightforward and does not require writing a bunch of code to denote how the algorithm should organize the data inside itself.

  • KeystoneML: Like the oil pipeline it takes its name from, KeystoneML is built to help construct machine learning pipelines. The pipelines help prepare the data for the model, build and iteratively test the model, and tune the parameters of the model to squeeze out the best performance and capability.

Whereas Hadoop’s ecosystem is large and sprawling, the Spark ecosystem tends to be more tightly constrained.  The nice part about Spark is that it plays nicely with the Hadoop ecosystem—you can have a cluster or architecture with Spark and Hadoop-centric technologies (Storm, Kafka, Hive, Flume, etc. etc.) working together quite nicely.

Related Posts

When Spark Meets Hive

Anna Martin and Rosaria Silipo look at combining HiveQL and SparkQL: We set our goal here to investigate the age distribution of Maine residents, men and women, using SQL queries. But the question is… on Apache Hive or on Apache Spark? Well, why not both? We could use SparkSQL to extract men’s age distribution and […]

Read More

Warning When Using dplyr Mutate

John Mount has a warning if you are using dplyr’s mutate function and connecting to Spark or a database: If you are using the R dplyr package with a database or with Apache Spark: I respectfully advise you inspect your code to ensure you are not using any values created inside a dplyr::mutate() statement inside the same dplyr::mutate() statement. This has been my coding advice for some time, […]

Read More

Categories

September 2016
MTWTFSS
« Aug Oct »
 1234
567891011
12131415161718
19202122232425
2627282930