Securing The Data Plane

Michael Schiebel gives an overview of security architecture inside a data lake:

Existing platform based Hadoop architectures make several implicit assumptions on how users interact with the platform such as developmental research versus production applications.  While this was perfectly good in a research mode, as we move to a modern data application architecture we need to bring back modern application concepts to the Hadoop ecosystem.  For example, existing Hadoop architectures tightly couple the user interface with the source of data.  This is done for good reasons that apply in a data discovery research context, but cause significant issues in developing and maintaining a production application.  We see this in some of the popular user interfaces such as Kibana, Banana, Grafana, etc.  Each user interface is directly tied to a specific type of data lake and imposes schema choices on that data.

Read the whole thing.  Also, “Securing the data plane” sounds like a terrible ’90s action film.

Related Posts

Handling Errors in Kafka Connect

Robin Moffatt shows us some techniques for handling errors in your Kafka topics: We’ve seen how setting errors.tolerance = all will enable Kafka Connect to just ignore bad messages. When it does, by default it won’t log the fact that messages are being dropped. If you do set errors.tolerance = all, make sure you’ve carefully thought through […]

Read More

L-Diversity versus K-Anonymity

Duncan Greaves explains the concepts behind l-diversity: There are problems with K-anonymous datasets, namely the homogeneous pattern attack, and the background knowledge attack, details of which are in my original post. A slightly different approach to anonymising public datasets comes in the form of ℓ -diversity, a way of introducing further entropy/diversity into a dataset. […]

Read More

Categories

August 2016
MTWTFSS
« Jul Sep »
1234567
891011121314
15161718192021
22232425262728
293031