Kafka On AWS

Kevin Feasel

2016-07-29

Hadoop

Alex Loddengaard explains a few things you should think about when deploying Apache Kafka to AWS:

Kafka has built-in fault tolerance by replicating partitions across a configurable number of brokers. However, when a broker fails and a new replacement broker is added, the replacement broker fetches all data the original broker previously stored from other brokers in the cluster that host the other replicas. Depending on your application, this could involve copying tens of gigabytes or terabytes of data. Fetching this data takes time and increases network traffic, which could impact the performance of the Kafka cluster for the period the data transfer is happening.

EBS volumes are persisted when an instance fails or is terminated. When an EC2 instance running a Kafka broker fails or is terminated, the broker’s on-disk partition replicas remain intact and can be mounted by a new EC2 instance. By using EBS, most of the replica data for the replacement broker will already be in the EBS volume and hence won’t need to be transferred over the network. Only data produced since the original broker failed or was terminated will need to be fetched across the network.

There are some good insights here; read the whole thing if you’re thinking about running Kafka.

Related Posts

Performance Tuning Neural Network Training

Sean Owen takes us through a few techniques for speeding up neural network model training: Step #2: Use Early StoppingKeras (and other frameworks) have built-in support for stopping when further training appears to be making the model worse. In Keras, it’s the EarlyStopping callback. Using it means passing the validation data to the training process for evaluation […]

Read More

Machine Learning and Delta Lake

Brenner Heintz and Denny Lee walk us through solving data engineering problems with Delta Lake: As a result, companies tend to have a lot of raw, unstructured data that they’ve collected from various sources sitting stagnant in data lakes. Without a way to reliably combine historical data with real-time streaming data, and add structure to […]

Read More

Categories

July 2016
MTWTFSS
« Jun Aug »
 123
45678910
11121314151617
18192021222324
25262728293031