NodeGroup Performance Issues

Babak Behzad explains potential Hadoop NodeGroup performance bottlenecks:

As can be seen in the logs, the localityWaitFactor value is 1, but the delay that this code causes grows linearly with the number of required containers. Since our DFSIO-large benchmark creates 1,024 files, each 1 GB in size, it requests 1,024 YARN containers. Therefore, the code has to miss at least 1,024 scheduling opportunities until it schedules containers on this (wrongly assumed) OFF_SWITCH node.

But why is this delay enforced? This idea falls into a big area of scheduling research. The Delay Scheduling algorithm was introduced by Matei Zaharia’s EuroSys ’10 paper titled “Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling”.

That post is a bit deeper than my Hadoop administration comfort level, but if you’re given the task of performance tuning a cluster, this might be one place to look.

Related Posts

Calculated Columns and Memory Usage in Analysis Services

Teo Lachev troubleshoots a customer issue: Scenario: A client reports a memory spike during processing. They have a Tabular semantic model deployed to Azure Analysis Services. They fully process the model daily. The model normally takes less than 50 GB RAM but during processing, it spikes five times and Azure Analysis Services terminates the processing task […]

Read More

Performance Tuning Neural Network Training

Sean Owen takes us through a few techniques for speeding up neural network model training: Step #2: Use Early StoppingKeras (and other frameworks) have built-in support for stopping when further training appears to be making the model worse. In Keras, it’s the EarlyStopping callback. Using it means passing the validation data to the training process for evaluation […]

Read More

Categories

July 2016
MTWTFSS
« Jun Aug »
 123
45678910
11121314151617
18192021222324
25262728293031