Hive 2.1 Benchmarks

Kevin Feasel

2016-07-26

Hadoop

Nita Dembla and Gopal Vijayaraghavan compare Hive 2.1 versus Hive 1:

To measure the improvement LLAP brings we ran 15 queries that were taken from the TPC-DS benchmark, similar to what we have done in the past. The entire process was run using the hive-testbench repository and data generation tools. The queries there are adapted to Hive SQL but are otherwise not modified from the standard TPC-DS queries using any of the tricks that some big data vendors routinely use to show better performance for their tools. This blog only covers 15 queries but a more comprehensive performance test is underway.

The full test environment is explored below but at a high level the tests run using 10 powerful VMs with a 1TB dataset that is intended to show performance at data scales commonly used with BI tools. The same VMs and the same data are used both for Hive 1 and for Hive 2. All reported times represent the average across 3 runs in the respective Hive version.

Hive 2.1 looks like a big step forward for Hadoop performance.

Related Posts

Kafka Topic Reuse

Martin Kleppmann walks through the trade-offs of reusing Apache Kafka topics for different event types: The common wisdom (according to several conversations I’ve had, and according to a mailing list thread) seems to be: put all events of the same type in the same topic, and use different topics for different event types. That line of […]

Read More

Set Operations In Spark

Fisseha Berhane compares SparkSQL, DataFrames, and classic RDDs when performing certain set-based operations: In this fourth part, we will see set operators in Spark the RDD way, the DataFrame way and the SparkSQL way. Also, check out my other recent blog posts on Spark on Analyzing the Bible and the Quran using Spark and Spark […]

Read More

Categories

July 2016
MTWTFSS
« Jun Aug »
 123
45678910
11121314151617
18192021222324
25262728293031