Approximation Or Classification?

A blog post on the Algolytics blog discusses different approximation and classification models and when to use each:

Even if your target variable is a numeric one, sometimes it’s better to use classification methods instead of approximation ones. For instance if you have mostly zero target values and just a few non-zero values. Change the latter to 1, in this case you’ll have two categories: 1 (positive value of your target variable ) and 0. You can also split numerical variable into multiple subgroups : apartment prices for low, medium and high by equal subset width and predict them using classification algorithms. This process is called discretization.

Both types of models are common in machine learning, so a good understanding of when to use which is important.

Related Posts

Natural Language Generation With Markov Chains

Abdul Majed Raja shows off Markovify, a Python package which builds sentences using Markov chains: Markov chains, named after Andrey Markov, are mathematical systems that hop from one “state” (a situation or set of values) to another. For example, if you made a Markov chain model of a baby’s behavior, you might include “playing,” “eating”, […]

Read More

TensorFlow Lite

Laurence Maroney explains TensorFlow Lite: TensorFlow Lite is TensorFlow’s lightweight solution for mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size. TensorFlow Lite also supports hardware acceleration with the Android Neural Networks API. It’s designed to be low-latency, with optimized kernels for mobile apps, pre-fused activations and […]

Read More

Categories

July 2016
MTWTFSS
« Jun Aug »
 123
45678910
11121314151617
18192021222324
25262728293031