Using Azure Data Catalog

Kevin Feasel

2016-07-04

Cloud

Melissa Coates has some good advice if you start using Azure Data Catalog:

Register only data sources that users interact with. Usually the first priority is to register data sources that the users see-for instance, the reporting database or DW that you want users to go to rather than the original source data. Depending on how you want to use the data catalog, you might also want to register the original source. In that case you probably want to hide it from business users so it’s not confusing. Which leads me to the next tip…

Use security capabilities to hide unnecessary sources. The Standard (paid) version will allow you to have some sources registered but only discoverable by certain users & hidden from other users (i.e., asset level authorization). This is great for sensitive data like HR. It’s also useful for situations when, say, IT wants to document certain data sources that business users don’t access directly.

This is a good set of advice.

Related Posts

Setting Up SparklyR In Azure

David Smith shows how you can spin up a Spark cluster in Azure and install SparklyR on top of it: The SparklyR package from RStudio provides a high-level interface to Spark from R. This means you can create R objects that point to data frames stored in the Spark cluster and apply some familiar R paradigms (like dplyr) […]

Read More

Comparing Data Lake Job Runs

Yanan Cai shows how to compare stats on different executions of a job: Troubleshooting issues in recurring job is a time-consuming task. It starts with searching through the Job Browser to find instances of a recurring job and identifying both baseline and anomalous performance. This is followed by multi-way comparisons between job instances to figure out what […]

Read More

Categories

July 2016
MTWTFSS
« Jun Aug »
 123
45678910
11121314151617
18192021222324
25262728293031