Analyze Fantasy Sports With Spark

Jordan Volz is back with part two of his series on fantasy sports analysis using Apache Spark:

We’ll look at both zTot and nTot, and consider the player’s age and experience.The latter is potentially important because there have been shifts in what ages players joined the league over the timespan we are considering. It used to be rare for players to skip college, then it wasn’t, now they are required to play at least one year. It will be interesting to see if we see a difference in age versus experience in the numbers.

We start with the RDD containing all the raw stats, z-scores, and normalized z-scores. Another piece of data to consider is how a player’s z-score and normalized z-score change each year, so we’ll calculate the change in both from year to year. We’ll save off two sets of data, one a key-value pair of age-values, and one a key-value pair of experience-values. (Note that in this analysis, we disregard all players who played in 1980, as we don’t have sufficient data to determine their experience level.)

Jordan also looks at player performance over time and makes data analysis look pretty easy.

Related Posts

Using The Azure Data Science VM With GPUs

Jennifer Marsman has some tips and tricks around using the Azure Data Science Virtual Machine on an instance running with GPU support: To get GPU support, you need both hardware with GPUs in a datacenter, as well as the right software – namely, a virtual machine image that includes GPU drivers so you can use […]

Read More

Running Hive LLAP As A YARN Service

Gour Saha, et al, demonstrate running Apache Hive LLAP as a YARN service: Making LLAP as a first-class YARN service also enables us to use some of the other powerful features in YARN that were added in Apache Hadoop 3.0 / 3.1, some of them are noted below. Advanced container placement scheduling such as affinity […]

Read More

Categories

June 2016
MTWTFSS
« May Jul »
 12345
6789101112
13141516171819
20212223242526
27282930