Alerting On Drastic Changes

Rob Collie has a post on using Power BI to spot outliers:

The basic idea here is “alert me if something has changed dramatically.”  If there’s a corner of my business that has spiked or crashed in a big way, I want to know.  If something has dramatically improved in a particular region, I may want to dive into that and see if it’s something we can replicate elsewhere.  And if something has fallen off a cliff, well, I need to know that for obvious reasons too.  And both kinds of dramatic change, positive and negative, can easily be obscured by overall aggregate values (so in some sense this is a similar theme to “Sara Problem?”)

So the first inclination is to evaluate distance from average performance.  And maybe that would be fine with high-volume situations, but when we’re subdividing our business into hundreds or perhaps thousands of micro-segments, we end up looking at smaller and smaller sample sizes, and “normal” variation can be legitimately more random than we expect.

This looks really cool.  If you read the comments, Rob notes that performance does break down at some point.  If you start hitting that point, I’d think about shifting this to R.

Related Posts

Window Functions And Default Frames

Steve Jones elaborates on the default frame that a window function has: There is a framing clause that I can use after the ORDER BY in the OVER clause. The default frame is RANGE UNBOUNDED PRECEDING AND CURRENT ROW. At least, this is what appears when you include an ORDER BY clause. Many of us […]

Read More

Building A Secure Microservice Which Uses Kafka Streams

George Vetticaden has a reference architecture with sample code for a secured microservice running atop Kafka Streams: One of the key benefits of using Kafka Streams over other streaming engines is that the stream processing apps / microservices don’t need a cluster. Rather, each microservice can be run as a standalone app (e.g: jvm container). […]

Read More

Categories

June 2016
MTWTFSS
« May Jul »
 12345
6789101112
13141516171819
20212223242526
27282930