MapR Goes Spark-First

MapR has introduced a new version of their platform which is based on Spark:

With the emergence of Spark as a unified computing engine, developers can perform ETL and advanced analytics in both continuous (streaming) and batch mode either programmatically (using Scala, Java, Python, or R) or with procedural SQL (using Spark SQL or Hive QL).

With MapR converging the data management platform, you can now take a preferential Spark-first approach. This differs from the traditional approach of starting with extended Hadoop tools and then adding Spark as part of your big data technology stack. As a unified computing engine, Spark can be used for faster batch ETL and analytics (with Spark core instead of MapReduce and Hive), machine learning (with Spark MLlib instead of Mahout), and streaming ETL and analytics (with Spark Streaming instead of Storm).

MapReduce is so 2012…

Related Posts

Running Hive LLAP As A YARN Service

Gour Saha, et al, demonstrate running Apache Hive LLAP as a YARN service: Making LLAP as a first-class YARN service also enables us to use some of the other powerful features in YARN that were added in Apache Hadoop 3.0 / 3.1, some of them are noted below. Advanced container placement scheduling such as affinity […]

Read More

Exception Handling In Scala

Shivangi Gupta shows off the Either keyword in Scala: How to get values from Either? There are many ways we will talk about all one by one.  One way to get values is by doing left and right projection. We can not perform any operation i.e, map, filter etc; on Either. Either provide left and right methods to get the left and right projection. Projection on […]

Read More

Categories

June 2016
MTWTFSS
« May Jul »
 12345
6789101112
13141516171819
20212223242526
27282930