MapR Goes Spark-First

MapR has introduced a new version of their platform which is based on Spark:

With the emergence of Spark as a unified computing engine, developers can perform ETL and advanced analytics in both continuous (streaming) and batch mode either programmatically (using Scala, Java, Python, or R) or with procedural SQL (using Spark SQL or Hive QL).

With MapR converging the data management platform, you can now take a preferential Spark-first approach. This differs from the traditional approach of starting with extended Hadoop tools and then adding Spark as part of your big data technology stack. As a unified computing engine, Spark can be used for faster batch ETL and analytics (with Spark core instead of MapReduce and Hive), machine learning (with Spark MLlib instead of Mahout), and streaming ETL and analytics (with Spark Streaming instead of Storm).

MapReduce is so 2012…

Related Posts

Streaming ETL In Practice Using KSQL

Robin Moffatt builds an example of streaming ETL using Oracle, GoldenGate, and Kafka: So in this post I’m going to show an example of what streaming ETL looks like in practice. I’m replacing batch extracts with event streams, and batch transformation with in-flight transformation of these event streams. We’ll take a stream of data from […]

Read More

Automating HDF Cluster Deployment

Ali Bajwa has a how-to guide for automating HDF 3.1 cluster deployment on AWS: The release of HDF 3.1 brings about a significant number of improvements in HDF: Apache Nifi 1.5, Kafka 1.0, plus the new NiFi registry. In addition, there were improvements to Storm, Streaming Analytics Manager, Schema Registry components. This article shows how you can […]

Read More


June 2016
« May Jul »