MapR has introduced a new version of their platform which is based on Spark:
With the emergence of Spark as a unified computing engine, developers can perform ETL and advanced analytics in both continuous (streaming) and batch mode either programmatically (using Scala, Java, Python, or R) or with procedural SQL (using Spark SQL or Hive QL).
With MapR converging the data management platform, you can now take a preferential Spark-first approach. This differs from the traditional approach of starting with extended Hadoop tools and then adding Spark as part of your big data technology stack. As a unified computing engine, Spark can be used for faster batch ETL and analytics (with Spark core instead of MapReduce and Hive), machine learning (with Spark MLlib instead of Mahout), and streaming ETL and analytics (with Spark Streaming instead of Storm).
MapReduce is so 2012…