Machine Learning Packages In R

Khushbu Shah discusses good R packages to help with your machine learning projects:

If missing values are something which haunts you then MICE package is the real friend of yours.

When we face an issue of missing values we generally go ahead with basic imputations such as replacing with 0, replacing with mean, replacing with mode etc. but each of these methods are not versatile and could result into a possible data discrepancy.

MICE package helps you to impute missing values by using multiple techniques, depending on the kind of data you are working with.

I’d heard of a couple of these, but most of them are new to me.

Related Posts


John Mount explains the vtreat package that he and Nina Zumel have put together: When attempting predictive modeling with real-world data you quicklyrun into difficulties beyond what is typically emphasized in machine learning coursework: Missing, invalid, or out of range values. Categorical variables with large sets of possible levels. Novel categorical levels discovered during test, cross-validation, or […]

Read More

R 3.4.4 Now Available

David Smith notes that R 3.4.4 is now generally available: R 3.4.4 has been released, and binaries for Windows, Mac, Linux and now available for download on CRAN. This update (codenamed “Someone to Lean On” — likely a Peanuts reference, though I couldn’t find which one with a quick search) is a minor bugfix release, and shouldn’t cause […]

Read More


June 2016
« May Jul »