Thomas LeBlanc discusses reasons for having a date dimension in a data warehouse:
The date dimension can also contain columns for Weekend versus Weekday, Holiday and month markers like 2014-10 or by quarter like 2014-Q1. All these can be computed once in the dimension table and used at will by query writers. They now do not have to know how to use T-SQL functions or concatenate substrings of “CASTed” date columns.
Then, when the DimDate is related to various Fact tables and processed into an OLAP cube, the measures and aggregations are displayable side by side through the DimDate dimension which is now considered a Conformed Dimension. The slicing and dicing of data has just been made a whole lot easier.
I’d go a step further and say that every instance should have access to a tally table and a date table.