Spark Accumulators

Prithviraj Bose explains accumulators in Spark:

However, the logs can be corrupted. For example, the second line is a blank line, the fourth line reports some network issues and finally the last line shows a sales value of zero (which cannot happen!).

We can use accumulators to analyse the transaction log to find out the number of blank logs (blank lines), number of times the network failed, any product that does not have a category or even number of times zero sales were recorded. The full sample log can be found here.
Accumulators are applicable to any operation which are,
1. Commutative -> f(x, y) = f(y, x), and
2. Associative -> f(f(x, y), z) = f(f(x, z), y) = f(f(y, z), x)
For example, sum and max functions satisfy the above conditions whereas average does not.

Accumulators are an important way of measuring just how messy your semi-structured data is.

Related Posts

Security Improvements In Kafka And Confluent Platform

Vahid Fereydouny demonstrates a number of security improvements made to Apache Kafka 2.0 as well as Confluent Platform 5.0: Over the past several quarters, we have made major security enhancements to Confluent Platform, which have helped many of you safeguard your business-critical applications. With the latest release, we increased the robustness of our security feature […]

Read More

SparkSession Versus SparkContext

Abhishek Baranwal explains the differences between the SparkSession object and the SparkContext object when writing Spark code: Prior to spark 2.0, SparkContext was used as a channel to access all spark functionality. The spark driver program uses sparkContext to connect to the cluster through resource manager. SparkConf is required to create the spark context object, […]

Read More

Categories

May 2016
MTWTFSS
« Apr Jun »
 1
2345678
9101112131415
16171819202122
23242526272829
3031