Getting Started With Hadoop

Kevin Feasel

2016-03-25

Hadoop

Ginger Grant has some pointers on getting started with the Hortonworks Data Platform sandbox:

Previously, spinning up a virtual machine meant purchasing software. No more, as there is now an open source application. In the example shown here, the Linux operating system will be installed, you can put any operating system you want on your virtual machine, provided of course you have a license for it. If you don’t feel comfortable installing non-released versions of code like SQL Server 2016, on your pc, a virtual machine is a great way to test it out. You will need to provide your own operating system, but there are trial versions you can use for limited periods of time as well. The open source virtual machine Oracle VM Virtual Box is the only open source version of a virtual machine software. You can download it here. This software is needed prior to installing the Hortonworks Sandbox. Obviously Hortonworks is not the only version of Hadoop available, Cloudera has a Hadoop VM too, which you can download as well. Personally I am not a use fan of the Cloudera Manager, which is why I prefer Hortonworks, but either will work with polybase.

I’m personally a fan of VMware Player for VMs, but either will work well for the task.

Related Posts

Avro Schemas In Kafka

Stephane Maarek explains the value of using Apache Avro as a schema structure for your Kafka topics: Avro has support for primitive types ( int, string, long, bytes, etc…), complex types (enum, arrays, unions, optionals), logical types (dates, timestamp-millis, decimal), and data record (name and namespace). All the types you’ll ever need. Avro has support for embedded documentation. Although documentation is optional, in my workflow I […]

Read More

When Spark Meets Hive

Anna Martin and Rosaria Silipo look at combining HiveQL and SparkQL: We set our goal here to investigate the age distribution of Maine residents, men and women, using SQL queries. But the question is… on Apache Hive or on Apache Spark? Well, why not both? We could use SparkSQL to extract men’s age distribution and […]

Read More

Categories

March 2016
MTWTFSS
« Feb Apr »
 123456
78910111213
14151617181920
21222324252627
28293031