Anil Kumar Moka does a bit of data loading:
In our ongoing exploration of Snowflake data loading strategies, we’ve previously examined how to use pandas with SQLAlchemy to efficiently move data into Snowflake tables. That approach leverages pandas’ intuitive DataFrame handling and works well for many common scenarios where you’re already manipulating data in Python before loading it to Snowflake.
In this article, we’re diving deeper into the Snowflake toolbox by exploring the native Snowflake Connector for Python. While pandas offers simplicity and familiarity, the native connector provides a different set of capabilities focused on precision control and Snowflake-specific optimizations. This article explains you when and how to use this more direct approach for everything from small CSV files to massive datasets that would overwhelm pandas.
Click through for the full article.
Leave a Comment