Finding Transactions After A Crash

Paul Randal has a procedure which will find rolled-back transactions after a crash:

Then we can search in the transaction log, using the fn_dblog function, for LOP_BEGIN_XACT log records from before the crash point that have a matching LOP_ABORT_XACT log record after the crash point, and with the same transaction ID. This is easy because for LOP_BEGIN_XACT log records, there’s a Begin Time column, and for LOP_ABORT_XACT log records (and, incidentally, for LOP_COMMIT_XACT log records), there’s an End Time column in the TVF output.

And there’s a trick you need to use: to get the fn_dblog function to read log records from before the log clears (by the checkpoints that crash recovery does, in the simple recovery model, or by log backups, in other recovery models), you need to enable trace flag 2537. Now, if do all this too long after crash recovery runs, the log may have overwritten itself and so you won’t be able to get the info you need, but if you’re taking log backups, you could restore a copy of the database to the point just after crash recovery has finished, and then do the investigation.

Read on for the code, as well as a test.

Doomed Transactions

Michael Swart talks about doomed transactions:

So the procedure was complicated and it used explicit transactions, but I couldn’t find any TRY/CATCH blocks anywhere! What I needed was a stack trace, but for T-SQL. People don’t talk about T-SQL stack traces very often. Probably because they don’t program like this in T-SQL. We can’t get a T-SQL stack trace from the SQLException (the error given to the client), so we have to get it from the server.

Michael shows how to get stack trace information and provides some advice on the process (mostly, “don’t do what we did”).

Identity Column Rollback

David Alcock figures out how identity columns behave when transactions get rolled back:

Identity columns are a very commonly used feature within tables in SQL Server. Basically when specified as an identity a column will automatically increment by the specified value; so if we have an identity increment of 1 and insert 5 rows they will automatically be numbered 1 to 5.
One cautionary measure with identities is that they don’t reset themselves when rows are deleted. If we delete rows 4 and 5 the next row will still be populated as identity 6. That’s fine, but what happens if we rollback an insert.

Read on for the answer.

Log Buffers

Mark Broadbent has started a series on transaction durability.  His first topic is the log buffer:

SQL Server is a highly efficient transaction processing platform and nearly every single operation performed by it, is usually first performed within memory. When operations are performed within memory, the need to touch physical resources (such as physical disk IOPS) are also reduced, and reducing the need to touch physical resources means those physical boundaries (and their limitations) have less impact to the overall system performance. Cool right?!

Click through to read more about how log buffers work and why they help improve SQL Server’s performance.

Transaction Names Are Case Sensitive

Clive Strong notes that transaction names in SQL Server are case sensitive:

I had an issue today running a colleague’s code (the rollback and commit were commented out, but that is another story). The code failed and I tried to rollback the transaction but received this error message;

Msg 6401, Level 16, State 1, Line 5
Cannot roll back t1. No transaction or savepoint of that name was found.

I can’t remember the last time I named a transaction, but if you are in that habit, it’s important to remember.

Log Chains

Dave Mason discusses broken log chains:

There are a handful of activities that have broken my SQL Server backup routines. Sometimes a DIFFERENTIAL (or LOG) backup would fail because there was no FULL backup. Other times, a LOG backup would fail because the log chain was broken. Some of those activities include:

  1. Creating a new database.

  2. Changing the recovery model to SIMPLE.

  3. Restoring/reverting a database from a snapshot.

  4. Any other activity that breaks the transaction log chain.

Dave discusses an easy way of figuring out if you’ve just performed an activity which breaks the log chain.

Identifying Object Names Using fn_dblog()

Frank Gill digs into the transaction log to find object names used in CREATE and ALTER statements:

This is the object id of the view that was created.  So, Jes’s question was answered.  But this led me to one of my other favorite SQL Server topics: string manipulation.  The following script will identify all transactions for a particular Transaction Name and return the object name affected.  The comments provide additional information about the functionality.

Click through to check out Frank’s script.

Analyze Transaction Log Hierarchy

Paul Randal has written code to determine how much log an operation has generated:

Over the weekend there was a discussion on the MVP distribution list about the sys.dm_tran_database_transactions DMV and how one cannot use it to accurately determine how much log an operation has generated because it doesn’t provide a roll-up of the sub-transaction metrics to the outer transaction. This makes the output somewhat non-intuitive.

The discussion prompted me to write some code I’ve been meaning to do since 2012, when SQL Server 2012 introduced a field in LOP_BEGIN_XACT log records that tracks the transaction ID of the parent transaction, allowing the hierarchy of transactions to be investigated.

The actual code is at the bottom of the article, and is available in a zip file here.

It provides two stored procs, sp_SQLskillsAnalyzeLog and sp_SQLskillsAnalyzeLogInner, with the former making use of the latter, and the latter calling itself recursively.

I’d consider this squarely in the advanced troubleshooting realm.  Definitely read the whole thing and Paul’s code.

Transaction Log Is Full

Andy Galbraith diagnoses an “ACTIVE_BACKUP_OR_RESTORE” issue:

The way FULL backups work in SQL Server, the transaction log is not released for re-use during a FULL backup, even if regular LOG backups are occurring or the database is in SIMPLE recovery.  This is due to the fact that the portion of the LOG that is used during the FULL has to be persisted during the FULL in order to be backed up at the end of the FULL – that is, the FULL backup includes the data at the start of the FULL (23:30) *plus* the LOG used until the end of the FULL (in the case of the 12/04-12/05 backup, the LOG used from 23:30 to 07:11).  This is the meaning of the ACTIVE_BACKUP_OR_RESTORE message – the LOG is waiting for the end of the active FULL backup before it can be released for re-use, which in this case was causing the LOG/LDF file to grow to fill its mount point.

This is interesting analysis and a reminder that even though you’re in Simple recovery mode, SQL Server still uses a transaction log and it’s just as important.

Watch Named, Nested Transactions

Gail Shaw finishes her outstanding series on transactions:

The error was thrown by the ROLLBACK statement. As such, the transaction is still open, the locks are held and the transaction log space can’t be reused. Unless the application that called this was checking for open transactions, that transaction could potentially be left open for quite some amount of time, causing blocking and/or the transaction log to grow.

It’s not just that someone in the future might call the code from another stored proc within a transaction, it’s also that it might be that the code is called from an application which started a transaction. Or called from SSIS which started a transaction. It’s very hard to ensure that code is never called from within an existing transaction

Read the whole thing.

Categories

November 2018
MTWTFSS
« Oct  
 1234
567891011
12131415161718
19202122232425
2627282930