Press "Enter" to skip to content

Category: T-SQL

Finding The Closest Numeric Match

Itzik Ben-Gan has a T-SQL puzzle for us:

As you can see, both T1 and T2 have a numeric column (INT type in this example) called val. The challenge is to match to each row from T1 the row from T2 where the absolute difference between T2.val and T1.val is the lowest. In case of ties (multiple matching rows in T2), match the top row based on val ascending, keycol ascending order. That is, the row with the lowest value in the val column, and if you still have ties, the row with the lowest keycol value. The tiebreaker is used to guarantee determinism.

Click through for the details as well as several solutions.

Comments closed

Finding The SQL Server Port With T-SQL

Jack Vamvas shows us how to find the port SQL Server is listening on using T-SQL:


Question: Without going into the SQL Server Configuration manager via the GUI is there a command oriented method to extract the port number SQL Server is listening on?
 
Answer: There are a few different methods to extract the port number without going into the Configuration interface.
Method 1 – use xp_readererrorlog

Read on for an explanation of this technique as well as links to a couple other methods.  I hadn’t thought about using the error log as a source, but it works.

Comments closed

Continuing The Advent Of Code In T-SQL

Wayne Sheffield has a few more posts in the Advent of Code series.  His latest edition:

In Day 5, we find ourselves working with the polymers of the new Santa suit. A polymer (the input file), consists of units, represented by upper and lower case letters. Adjacent units of the same letter, but of different polarity (case), cancel each other out. This may lead to other units that can then cancel each other out. The goal is to reduce the polymer to as small as possible, and report back the reduced size.

Tasks:

  1. Perform a case-sensitive search/replace for each letter of the alphabet. The search is for a pair of the same letter, where one is upper case, and the other is lower case.
  2. Recursively perform this operation until the string can no longer be reduced.

In my opinion, the key part to this is that the operation needs to be performed recursively. I can think of only two ways to recursively perform an operation in SQL Server:

  1. A recursive common table expression (cte).
  2. Using a WHILE loop.

I don’t like using either of these mechanisms in SQL Server – they both perform operations in a “Row-By-Agonizing-Row” method, instead of a more set-based approach. However, set-based recursion usually performs extremely poorly. So, I’m going to use a while loop.

The recursion requirement does limit things a bit; otherwise I could see putting something together with the LEAD() window function.

Comments closed

Understanding Recursive CTEs Via Execution Plans

Hugo Kornelis shows us how SQL Server’s database engine implements recursive common table expressions:

I am pretty sure that (almost) everyone reading this blog knows that a CTE (Common Table Expression) is an independent subquery that can be named and then referenced (multiple times if needed) in the main query. This makes CTEs an invaluable tool to increase the readability of complex queries. Almost everything we can do with a CTE can equally well be done by using subqueries directly in the query but at the cost of losing readability.

However, there is also one feature that is actually unique to CTEs: recursion. This blog post is not about what this feature is, what it does, or how to write the code. A brief description is given as part of the complete explanation of CTEs in Books Online, and many bloggers have written about recursive CTEs as well.

For this post, I’ll assume the reader knows what a recursive CTE is, and jump into the execution plan to learn how this recursion is actually implemented.

This is (as usual) a great article, and helps explain why recursive CTEs can be slow.

Comments closed

Advent Of Code Day One, In T-SQL Form

Wayne Sheffield walks through several useful techniques for T-SQL developers:

And here we have a T-SQL solution for Day 1 of the Advent of Code challenge. The key tasks that we can learn from today are:

  • Loading a file.

  • Split a string on a delimiter.

  • Including additional rows into a result set (adding the first zero with a UNION ALL).

  • Multiplying (duplicating) a result set multiple times.

  • Performing a running total calculation.

  • Assigning a sequential number to a set of rows in a specific order.

  • Use of the GROUP BY and HAVING clauses while performing an aggregation.

Read the whole thing.

Comments closed

Testing Scalar UDF Performance In SQL Server 2019 CTP 2.1

Brian Hansen takes a look at the scalar UDF performance improvements in SQL Server 2019:

In one of my sessions, Set Me Up: How to Think in Sets, I discuss a variety of performance-inhibiting query constructs, including scalar UDFs. I thought it would be interesting to take the simple scalar function that I use in the demo and see what kind of difference that scalar inlining might make.

First, I restored the CorpDB database that I use in the session to my SQL Server 2019 CTP 2.1 instance and initially set the compatibility level to 140. I also ran script 001 from the demo to create the needed database tables (no need to create the CLR objects for this test). I then ran script 030 to execute the scalar UDF test. In a nutshell, this script

  • creates a UDF

  • runs a query that calls the UDF about 13,000 times, capturing the time required to do so

  • repeated this test five times

  • discards the fastest and slowest tests

  • reports the average time for the remaining three tests

If I’m reading Brian’s notes right, it’s still slower than writing the set-based solution yourself, but a huge improvement over the prior scalar function performance.

Comments closed

Adding Constraints In The CREATE TABLE Statement

Steve Jones shows how you can add constraints in your CREATE TABLE statement:

A good habit to get into is to explicitly name your constraints. I try to do this when I create tables to be sure that a) I have a PK and b) it’s named the same for all environments.

I can create a PK inline, with a simple table like this:

CREATE TABLE Batting
   (
        BattingKey INT NOT NULL CONSTRAINT BattingPK PRIMARY KEY
        , PlayerID INT
        , BattingDate DATETIME
        , AB TINYINT
        , H TINYINT
        , HR tinyint
   )
;

This gives a primary key, named “BattingPK, that I can easily see inline with the column.

Steve also gives an alternative formulation which works well for composite keys.  You can additionally add constraints after the create statement, but if you are creating temp tables and want to take advantage of temp table reuse, constraints have to be created as part of the table (and cannot have names).  For additional fun, since SQL Server 2014, you can create indexes as part of the CREATE TABLE statement as well—that was needed to create memory-optimized tables as back in that edition, you couldn’t add new indexes after the fact.

Comments closed

A Case When CASE Isn’t The Right Case

Adrian Buckman notes differences in the two ways of using CASE statements:

It looks so clean compared to the first example! but it wasn’t until I tested the second method out that I realised that the behaviour of the two CASE expressions are different as outlined on books online

The CASE expression has two formats:
The simple CASE expression compares an expression to a set of simple expressions to determine the result.
The searched CASE expression evaluates a set of Boolean expressions to determine the result.
Both formats support an optional ELSE argument.

I put together some examples to illustrate the difference when evaluating Null using the two Case expressions, the query returns the column ‘Databasename’ from the derived list values clause, example 1 has a Null value and example 2 has a value of ‘SQLUndercover’ which you will see below:

Adrian looks into a scenario in which the two CASE expressions return different results, and digs into execution plans to find out why.

Comments closed

DATEDIFF

Randolph West continues a series on covering dates and times, looking at DATEDIFF and DATEDIFF_BIG:

The only functional difference between them is that the DATEDIFF_BIG() returns values as a BIGINT, for results that exceed the boundary of an INT. Keep this in mind when deciding which one to use. For example, the maximum number of seconds an INT can hold is 68 years, while a BIGINT can comfortably store the number of seconds in 10,000 years. This becomes especially important when dealing with microseconds and nanoseconds.

The rest of the post will use DATEDIFF() to refer to both functions.

I think this might be the first time I’d read about DATEDIFF_BIG()and I’m not aware of ever having used it.  But hey, it could make sense if you need to track more than 2 billion microseconds.

Comments closed

Casting Constants And POWER()

Steve Jones walks us through a case of an unexpected error:

I ran into an interesting problem while working with the POWER() function. I was trying to do some binary conversions and had a statement like this to process powers of 2.

SELECT POWER(2, n)

This was designed to take a value and return a power of 2. I then used a different value to determine if this was added to my conversion factor or not. In trying to work with some larger numbers, I ran into this error:

Msg 232, Level 16, State 3, Line 3
Arithmetic overflow error for type int, value = 2147483648.000000.

Click through for a description of the problem as well as Steve’s solution.

Comments closed