Press "Enter" to skip to content

Category: Storage

Creating An Azure Storage Account

John Morehouse walks us through setting up an Azure Storage Account through the Azure Portal:

Azure offers a lot of features that enable IT professionals to really enhance their environment.  One feature that I really like about Azure is storage accounts.  Since disk is relatively cheap, this continues to hold true in the cloud.  For less than $100 per month, you could get up to 5TB of storage including redundancy to another Azure region.

Read on to learn how to set up one of these.

Comments closed

Availability Groups And Read-Only Filegroups

Allan Hirt walks us through a couple of scenarios involving databases with read-only filegroups using Always On Availability Groups:

A question came across my inbox this week which I decided to investigate: what happens if you have read only filegroups as part of your database, and you want to use Always On Availability Groups? Let’s find out.
First, I have a database with two filegroups: one read write (PRIMARY) and one read only (ROFG).

Click through for a demonstration of this, as well as a different scenario in which you might want only the read-write data on the secondary.

Comments closed

Azure Data Lake Storage Generation 2

James Baker announces updates to Azure Data Lake Storage Gen2:

As we’ve discussed many times, the performance of the storage layer has an outsized impact on the total cost of ownership (TCO) for your complete analytics pipeline. This is due to the fact that every percentage point improvement in storage performance results in that same percentage reduction in the requirement for the very expensive compute layer. Given that the disaggregated storage model allows us to scale compute and storage independently, that percentage reduction in compute requirement results in almost the same (compute typically equates to 90 percent of the TCO) reduction in TCO.
So, when I say that ADLS Gen2 provides performance improvements ranging from 10-50 percent, depending on the nature of the workload over existing storage solutions, this equates to VERY significant reductions in the monthly analytics spend. It also has the added benefit of providing your insights sooner!

Check out all of the changes.

Comments closed

Premium Blob Storage In Azure

James Serra describes a new tier of Azure Blob Storage:

As a follow-up to my blog Azure Archive Blob Storage, Microsoft has released another storage tier called Azure Premium Blob Storage (announcement).  It is in private preview in US East 2, US Central and US West regions.

This is a performance tier in Azure Blob Storage, complimenting the existing Hot, Cool, and Archive tiers.  Data in Premium Blob Storage is stored on solid-state drives, which are known for lower latency and higher transactional rates compared to traditional hard drives.

It is ideal for workloads that require very fast access time such as interactive video editing, static web content, and online transactions.  It also works well for workloads that perform many relatively small transactions, such as capturing telemetry data, message passing, and data transformation.

It’s in private preview for now, but my guess is that it’ll be available to the general public soon enough.

Comments closed

Using IO Cache To Speed Up Spark Jobs

Chris Seferlis looks at what the HDInsight team has done to speed up Apache Spark jobs:

The big news here is the recently released preview of HDInsight IO Cache, which is a new transparent data caching feature that provides customers with up to 9X performance improvement for Spark jobs, without an increase in costs.

There are many open source caching products that exist in the ecosystem: Alluxio, Ignite, and RubiX to name a few big ones. The IO Cache is also based on RubiX and what differentiates RubiX from other comparable caching products is its approach of using SSD and eliminating the need for explicit memory management. While other comparable caching products leverage the reservation of operating memory for caching the data.

Read on for more details.

Comments closed

Finding Databases With Multiple Data Or Log Files

Lori Brown has a couple of quick scripts to help find databases made up of several data or log files:

This might be kind of basic but since I am working on a comprehensive script to discover things that a DBA really needs to know about, I made a couple of queries that will produce a list of the databases that have multiple files along with the locations of the physical files.  One query finds multiple database files (mdf’s) and the other looks for multiple transaction log files (ldf’s).  This will also find the Filestream file locations.  Since I often have to take on instances without ever having seen them, it is good to know about little things like this.

This script might be helpful in finding minor performance gains by looking for places to add data files or remove log files.

Comments closed

Running SQL Server On Cluster Shared Volumes

Sreekanth Bandarla continues a series on clustered shared volumes:

In the previous part of this series, we have seen what a cluster shared volume is and what are the advantages and other considerations to keep in mind when deploying CSVs for SQL Server workloads. In this article, I will walk though actual installation of a failover cluster Instance leveraging CSVs.

To begin with, I will walk you through my cluster setup from 20,000 foot view. I created two brand new VMs running windows server 2012 R2 and renamed them accordingly. Nothing special w.r.t disk drives at this point, Just basic VMs with a system drive(C$).

The rest of the story is over at SQLShack.

Comments closed

Switching To Managed Disks In Azure

Chris Seferlis walks us through an easy method to convert unmanaged disks to managed disks in Azure:

First off, why would you want a managed disk over an unmanaged one?

  • Greater scalability due to much higher IOPs and storage limits. There’s no longer the need to add additional storage accounts when you’re adding disk space, which has been a challenge for users that were using large virtual machines and required large storage space.

  • Better availability and reliability which ensures that disks are now isolated from each other in different storage scale units.

  • Managed disks offer an over 99.99% uptime, plus are always stored with 3 replicas of the data.

  • More granular access control by employing role-based access control (RBAC) security. You have granular capability to assign access to various people in your organization.

Keep reading to learn how to switch.

Comments closed

What To Watch When Using VSS Snapshots

Erik Darling shows us the wait stats associated with the Volume Shadow Copy Service (VSS):

A while back I wrote about the Perils of VSS Snaps.

After working with several more clients having similar issues, I decided it was time to look at things again. This time, I wanted blood. I wanted to simulate a slow VSS Snap and see what kind of waits stats I’d have to look out for.

Getting software and rigging stuff up to be slow would have been difficult.

Instead, we’re going to cheat and use some old DBCC commands.

This one almost got the “Wacky Ideas” tag but I’m grading on a curve for that category.

Comments closed

Recommendations For Storage On Azure SQL DB Managed Instances

Dimitri Furman has some thoughts on database storage architecture for Azure SQL Database Managed Instances:

MI GP uses Azure Premium Storage to store database files for all databases, except for the tempdb database. From the perspective of the database engine, this storage type is remote, i.e. it is accessed over the network, using Azure network infrastructure. To use Azure Premium Storage, MI GP takes advantage of SQL Server native capability to use database files directly in Azure Blob Storage. This means that there is not a disk or a network share that hosts database files; instead, file path is an HTTPS URL, and each database file is a page blob in Azure Blob Storage.

Since Azure Premium Storage is used, its performance characteristics, limits, and scalability goals fully apply to MI GP. The High-performance Premium Storage and managed disks for VMs documentation article includes a section describing Premium Storage disk limits. While the topic is written in the context of VMs and Azure disks, which is the most common usage scenario for Azure Premium Storage, the documented limits are also applicable to blobs. As shown in the limits table in the documentation, the size of the blob determines the maximum IOPS and throughput that can be achieved against the blob. For MI GP, this means that the size of a database file determines the maximum IOPS and throughput that is achievable against the file.

The disk/blob size shown in the limits table is the maximum size for which the corresponding limit applies. For example, a blob that is > 64 GB and <= 128 GB (equivalent to a P10 disk) can achieve up to 500 IOPS and up to 100 MB/second throughput.

Read the whole thing if you’re looking at Managed Instances, but there are some tips for SQL Server in Azure IaaS.

Comments closed