Press "Enter" to skip to content

Category: Query Tuning

Optimizing for Mediocre

Erik Darling points out an issue with some approaches to preventing parameter sniffing problems in queries:

Despite the many metric tons of blog posts warning people about this stuff, I still see many local variables and optimize for unknown hints. As a solution to parameter sniffing, it’s probably the best choice 1/1000th of the time. I still end up having to fix the other 999/1000 times, though.

In this post, I want to show you how using either optimize for unknown or local variables makes my job — and the job of anyone trying to fix this stuff — harder than it should be.

Click through for two methods, both of which end up being the wrong answer.

Comments closed

Tips on using Included Columns on Indexes

Chad Callihan shares some advice:

In my previous blog post, we saw how using INCLUDE to add a column to an index can make a difference compared to a key column. Let’s do a quick overview of INCLUDE and when it should be used.

Included columns are columns that can added to an index as non-key columns. They are only added to the leaf nodes of an index and have a bit more flexibility. Having trouble adding a particular data type to an index? Included columns can be data types unable to be added as key columns. Are you possibly maxed out on index key columns? Use INCLUDE to add any necessary columns.

Read on for an example and note the warning that you shouldn’t just add all of the columns to the INCLUDE clause.

Comments closed

Thinking Twice about Single-Column Indexes

Erik Darling wants you to perform a sanity check:

There are times when a single key column index can be useful, like for a unique constraint.

But for the most part, outside of the occasional super-critical query that needs to be tuned, single key column indexes either get used in super-confusing ways, or don’t get used at all and just sit around hurting your buffer pool and transaction log, and increasing the likelihood of lock escalation.

Read on for Erik’s full point. Sometimes that single-column non-clustered index really does do the trick—as in a unique key constraint, or a single column used in a really commonly-used EXISTS clause—but it’s worth thinking about whether that one column is really all there is.

Comments closed

Finding the Binding: I/O or CPU as the Constraint

Erik Darling lays down a lesson for us:

When you’re looking for queries to tune, it’s important to understand which part is causing the slowdown.

That’s why Actual Execution plans are so valuable in newer versions of SQL Server and SSMS. Getting to see operator timing and wait stats for a query can tell you a lot about what kind of problem you’re facing.

Let’s take a look at some examples.

Let’s, shall we?

Comments closed

Exchange Spill Wait Stats

Erik Darling looks at exchange spills:

There are quite high waits on PAGEIOLATCH_EX, SLEEP_TASK, and SLEEP_BPOOL_STEAL rounding out the top five. This is quite interesting, because I’ve never explicitly thought of PAGEIOLATCH_EX waits in the context of exchange spills. Normally, I think of them when queries read pages from disk into memory for modification.

Going down the line, SLEEP_TASK is familiar from our time spent with hash spills, but SLEEP_BPOOL_STEAL is so far undocumented anywhere.

Erik also does the math on this query and recommends that you not write a query like this one.

Comments closed

LAG() vs All

Kathi Kellenberger shows the power of the LAG() function in T-SQL:

Microsoft introduced the first window (aka, windowing or windowed) functions with SQL Server 2005. These functions were ROW_NUMBERRANKDENSE_RANKNTILE, and the window aggregates. Many folks, including myself, used these functions without realizing they were part of a special group. In 2012, Microsoft added several more: LAG and LEADFIRST_VALUE and LAST_VALUEPERCENT_RANK and CUME_DISTPERCENTILE_CONT, and PERCENTILE_DISC. They also added the ability to do running totals and moving calculations.

These functions were promoted as improving performance over older techniques, but that isn’t always the case. There were still performance problems with the aggregate functions introduced in 2005 and the four of the functions introduced in 2012. In 2019, Microsoft introduced Batch Mode on Row Store, available on Enterprise and Developer Editions, that can improve the performance of window aggregates and the four statistical functions from 2012.

I started writing this article to compare some window function solutions to traditional solutions. I found that there were so many ways to write a query that includes a column from another row that this article is dedicated to the window functions LAG and LEAD.

In these sorts of circumstances, LAG() is extremely efficient at its job. Click through to see just how efficient.

Comments closed

Implicit Conversions and SARGability

Erik Darling bears bad news:

Data types are one of those core things you need to get right. Whether it’s matching types between join columns, or between parameters and predicates, not doing so can really squash application performance in quite similar ways to writing non-SARGable predicates.

That’s because — wait for it — a lot of the stuff we’ve talked about over the last week that can happen with poorly written predicates can happen with poorly matched data types, too.

Click through for an example. If this keeps up, we may never save Sarge.

Comments closed

Indexed Views and SARGability

Erik Darling shows how you can create indexed views to make life easier when tuning queries:

There are some things that, in the course of normal query writing, just can’t be SARGablized. For example, generating and filtering on a windowing function, a having clause, or any other runtime expression listed here.

There are some interesting ways to use indexed views to our advantage for some of those things. While windowing functions and having clauses can’t be directly in an indexed view, we can give an indexed view a good definition to support them.

It won’t always work, but it is an option to keep in mind.

Comments closed

More on SARGability

Erik Darling continues a series on SARGability. First up, max datatype columns aren’t going to cut it:

No matter how much you scream, holler, and curse, when you try to filter data in a column with a max type, that predicate can’t be pushed to when you touch the index.

Leaving aside that max data types can’t be in the key of an index, because that would be insane, even if you stick them in the includes you’re looking at a lot of potential bulk, and not the good kind that makes you regular.

Read on for an example of Erik’s point, and then go to the next post, which covers fixing functions:

The bottom line on scalar UDFs is that they’re poison pills for performance.

They’re bad enough in the select list, but they get even worse if they appear in join or where clause portions of the query.

The example query we’re going to use doesn’t even go out and touch other tables, which can certainly make things worse. It does all its processing “in memory”.

Both of these are worth checking out.

Comments closed