Press "Enter" to skip to content

Category: Python

Gradient Boosting And XGBoost

Shirin Glander has another English-language transcript from a German video, this time covering gradient boosting techniques:

Let’s look at how Gradient Boosting works. Most of the magic is described in the name: “Gradient” plus “Boosting”.

Boosting builds models from individual so called “weak learners” in an iterative way. In the Random Forests part, I had already discussed the differences between Bagging and Boostingas tree ensemble methods. In boosting, the individual models are not built on completely random subsets of data and features but sequentially by putting more weight on instances with wrong predictions and high errors. The general idea behind this is that instances, which are hard to predict correctly (“difficult” cases) will be focused on during learning, so that the model learns from past mistakes. When we train each ensemble on a subset of the training set, we also call this Stochastic Gradient Boosting, which can help improve generalizability of our model.

The gradient is used to minimize a loss function, similar to how Neural Nets utilize gradient descent to optimize (“learn”) weights. In each round of training, the weak learner is built and its predictions are compared to the correct outcome that we expect. The distance between prediction and truth represents the error rate of our model. These errors can now be used to calculate the gradient. The gradient is nothing fancy, it is basically the partial derivative of our loss function – so it describes the steepness of our error function. The gradient can be used to find the direction in which to change the model parameters in order to (maximally) reduce the error in the next round of training by “descending the gradient”.

Along with neural networks, gradient boosting has become one of the dominant algorithms for machine learning, and is well worth learning about.

Comments closed

Building A Convolutional Neural Network With TensorFlow

Anirudh Rao walks us through Convolutional Neural Networks in TensorFlow:

What Are Convolutional Neural Networks?

Convolutional Neural Networks, like neural networks, are made up of neurons with learnable weights and biases. Each neuron receives several inputs, takes a weighted sum over them, pass it through an activation function and responds with an output.

The whole network has a loss function and all the tips and tricks that we developed for neural networks still apply on Convolutional Neural Networks.

Pretty straightforward, right?

Neural networks, as its name suggests, is a machine learning technique which is modeled after the brain structure. It comprises of a network of learning units called neurons.

These neurons learn how to convert input signals (e.g. picture of a cat) into corresponding output signals (e.g. the label “cat”), forming the basis of automated recognition.

Let’s take the example of automatic image recognition. The process of determining whether a picture contains a cat involves an activation function. If the picture resembles prior cat images the neurons have seen before, the label “cat” would be activated.

Hence, the more labeled images the neurons are exposed to, the better it learns how to recognize other unlabelled images. We call this the process of training neurons.

I (finally) finished chapter 5 of Deep Learning in R, which is all about CNNs.  It’s interesting just how open CNNs are for post hoc understanding, totally at odds with the classic neural network reputation for being a black box full of dark magic.

Comments closed

Quick Geospatial Data Plots In R And Python

Harry McLellan shows us how we can use R and Python to generate quick-and-dirty plots of geospatial data:

Now R has some useful packages like ggmap, mapdata and ggplot2 which allow you to source you map satellite images directly from google maps, but this does require a free google API key to source from the cloud. These packages can also plot the map around the data as I am currently trimming the map to fit the data. But for a fair test I also used a simplistic pre-built map in R. This was from the package rworldmap, which allows plotting at a country level with defined borders. Axes can be scaled to act like a zoom function but without a higher resolutions map or raster satellite image map it is pointless to go past a country level.

There’s a lot more you can do with both languages, but when you just want a plot in a few lines of code, both are up to the task.

Comments closed

Using K-Means Clustering For Anomaly Detection

Anais Dotis-Georgiou gives us an interesting use case of using k-means clustering along with InfluxDB (a time-series database) to detect anomalies in EKG data:

If you read Part Two, then you know these are the steps I used for anomaly detection with K-means:

  1. Segmentation – the process of splitting your time series data into small segments with a horizontal translation.

  2. Windowing – the action of multiplying your segmented data by a windowing function to truncate the dataset before and after the window. The term windowing gets its name from its functionality: it allows you to only see the data in the window range since everything before and after (or outside the window) is multiplied by zero. Windowing allows you to seamlessly stitch your reconstructed data together.

  3. Clustering – the task of grouping similar windowed segments and finding the centroids in the clusters. A centroid is at the center of a cluster. Mathematically, it is defined by the arithmetic mean position of all the points in the cluster.

  4. Reconstruction – the process of rebuilding your time series data. Essentially, you are matching your normal time series data to the closest centroid (the predicted centroid) and stitching those centroids together to produce the reconstructed data.

  5. Normal Error – The purpose of the Reconstruction is to calculate the normal error associated with the output of your time series prediction.

  6. Anomaly Detection – Since you know what the normal error for reconstruction is, you can now use it as a threshold for anomaly detection. Any reconstruction error above that normal error can be considered an anomaly.

Read the whole thing.  This is a really cool use case of a set of technologies along with a venerable (if sometimes troublesome) algorithm.

Comments closed

Python In SQL Server Reporting Services

Tomaz Kastrun shows how we can visualize results from Python models in SQL Server Reporting Services:

As we have created four different models, we would also like to have the accuary of the model visually represented using SSRS.

Showing plots created with Python might not be as straight forward, as with R Language.

Following procedure will extract the data from database and generate plot, that can be used and visualized in SSRS.

Tomaz shows us examples of displaying data as well as visuals generated in Python.

Comments closed

Running Python-Based ML Tasks In Excel

Tony Roberts shows off some of the functionality of PyXLL:

Once we’ve done the hard work of building and testing a model we need to put it to some use! Excel is a great front-end tool for playing with data interactively. It’s used virtually everywhere and so being able to deliver your model in Excel to non-developer users massively opens up opportunities for how it can be used in your business. Even if the model is being used as part of a real-time or batch system, being able to call the model interactively can be really helpful when trying to understand the behaviour of a system.

Fortunately now the model is written in Python getting it into Excel is extremely simple. PyXLL, the Python Excel Add-In has everything we need to write Python for Excel. All we need to do is add a few @xl_func decorators from the pyxll module and configure the PyXLL add-in to load the module containing our model.

If you’re not already familiar with PyXLL, check out the introduction to PyXLL from the user guide.

I mean, if the data’s going to live in Excel spreadsheets anyhow…

Comments closed

Comparing TensorFlow Versus PyTorch

Anirudh Rao compares PyTorch to TensorFlow:

For small-scale server-side deployments both frameworks are easy to wrap in e.g. a Flask web server.

For mobile and embedded deployments, TensorFlow works really well. This is more than what can be said of most other deep learning frameworks including PyTorch.

Deploying to Android or iOS does require a non-trivial amount of work in TensorFlow.

You don’t have to rewrite the entire inference portion of your model in Java or C++.

Other than performance, one of the noticeable features of TensorFlow Serving is that models can be hot-swapped easily without bringing the service down.

Read on for the full comparison.

Comments closed

What’s New With Machine Learning Services

Niels Berglund looks at SQL Server 2019’s Machine Learning Services offering for updates:

So, when I read What’s new in SQL Server 2019, I came across a lot of interesting “stuff”, but one thing that stood out was Java language programmability extensions. In essence, it allows us to execute Java code in SQL Server by using a pre-built Java language extension! The way it works is as with R and Python; the code executes outside of the SQL Server engine, and you use sp_execute_external_script as the entry-point.

I haven’t had time to execute any Java code as of yet, but in the coming days, I definitely will drill into this. Something I noticed is that the architecture for SQL Server Machine Learning Services has changed (or had additions to it).

That Java support is for Spark, I’d imagine.  And I hope they allow for Scala.

Comments closed

Hadoop + SQL Server In 2019

Travis Wright shows off a big part of what the SQL Server team has been working on the last couple of years:

SQL Server 2019 big data clusters provide a complete AI platform. Data can be easily ingested via Spark Streaming or traditional SQL inserts and stored in HDFS, relational tables, graph, or JSON/XML. Data can be prepared by using either Spark jobs or Transact-SQL (T-SQL) queries and fed into machine learning model training routines in either Spark or the SQL Server master instance using a variety of programming languages, including Java, Python, R, and Scala. The resulting models can then be operationalized in batch scoring jobs in Spark, in T-SQL stored procedures for real-time scoring, or encapsulated in REST API containers hosted in the big data cluster.

SQL Server big data clusters provide all the tools and systems to ingest, store, and prepare data for analysis as well as to train the machine learning models, store the models, and operationalize them.
Data can be ingested using Spark Streaming, by inserting data directly to HDFS through the HDFS API, or by inserting data into SQL Server through standard T-SQL insert queries. The data can be stored in files in HDFS, or partitioned and stored in data pools, or stored in the SQL Server master instance in tables, graph, or JSON/XML. Either T-SQL or Spark can be used to prepare data by running batch jobs to transform the data, aggregate it, or perform other data wrangling tasks.

Data scientists can choose either to use SQL Server Machine Learning Services in the master instance to run R, Python, or Java model training scripts or to use Spark. In either case, the full library of open-source machine learning libraries, such as TensorFlow or Caffe, can be used to train models.

Lastly, once the models are trained, they can be operationalized in the SQL Server master instance using real-time, native scoring via the PREDICT function in a stored procedure in the SQL Server master instance; or you can use batch scoring over the data in HDFS with Spark. Alternatively, using tools provided with the big data cluster, data engineers can easily wrap the model in a REST API and provision the API + model as a container on the big data cluster as a scoring microservice for easy integration into any application.

I’ve wanted Spark integration ever since 2016 and we’re going to get it.

Comments closed

Reticulate: Python-R Interop

Adnan Fiaz walks us through an example of using the reticulate library to call Python from R:

So what exactly does reticulate do? It’s goal is to facilitate interoperability between Python and R. It does this by embedding a Python session within the R session which enables you to call Python functionality from within R. I’m not going to go into the nitty gritty of how the package works here; RStudio have done a great job in providing some excellent documentation and a webinar. Instead I’ll show a few examples of the main functionality.

Just like R, the House of Python was built upon packages. Except in Python you don’t load functionality from a package through a call to librarybut instead you import a module. reticulate mimics this behaviour and opens up all the goodness from the module that is imported.

This is a good intro to a package which is already useful but I think will be even better over time as R & Python interoperability becomes the norm.  H/T R-Bloggers

Comments closed