Press "Enter" to skip to content

Category: Microsoft Fabric

Automate the Power BI Incremental Refresh Policy via Semantic Link Labs

Gilbert Quevauvilliers needs to get rid of some data fast:

The scenario here is that quite often there is a requirement to only keep data from a specific start date, or where it should be keeping data for the last N number of years (which is the first day in January).

Currently in Power BI using the default Incremental refresh settings this is not possible. Typically, you must keep more data than is required.

It is best illustrated by using a working example.

Check out that scenario and how you can use the Semantic Link Labs Python library to resolve it.

Comments closed

Cross-Workspace Data Transfer in Microsoft Fabric

Reitse Eskens moves some data around:

When you open Fabric, the first thing you need to do is choose a so-called workspace. This serves as a container for all your Fabric items. You can have one or more workspaces and the design is entirely up to you. From one workspace to rule them all to one workspace for each set of items (Lakehouse, Warehouse, Semantic model and Report, Pipeline, Notebook etc). Until yesterday (the day this blogpost came online) it was impossible to use a pipeline to get data across different workspaces.

You could work around it with tricks like shortcuts, but it feels more natural (or maybe I’m just old ;)) to be able to read data from workspace 1 and write it into workspace 2.
So let’s see how this works and, where capacity is used!

Click through to see it in action.

Comments closed

Performance Testing Microsoft Fabric Dataflow Gen2

Reitse Eskens hammers away:

In my previous blogs, I’ve been hammering Fabric with data from some different angles. Either with the Copy dataflows, notebooks, Pipelines, Data Warehouse SQL scripts or in PowerBI.
This time, I’m going to make the dataflow Gen2 work for it’s money.

Reitse tries the normal mechanism for Dataflows Gen2, but then also tries out a preview feature for fast copy and sees a marked difference.

Comments closed

Real-Time Intelligence in Microsoft Fabric

Dennes Torres takes a peek at a service with a new name:

When everyone starts to announce Real-Time Intelligence in Microsoft Fabric as something new, I need to double check what’s happening: Am I crazy or is everyone else? Wasn’t this already there?

Finally, I realize that Real-Time Intelligence is a new name for Real-Time Analytics, and they are doing this so fast we don’t even have time to notice the difference.

What’s Real-Time Intelligence and what’s the difference from Real-Time Analytics?

Read on for those answers.

Comments closed

Suspend and Resume Microsoft Fabric Capacity

Olivier Van Steenlandt saves some cash:

With only a limited budget for exploring and testing new tools, I had to figure out how to use my budget efficiently. Therefore, before making any decisions, I looked at the Microsoft Fabric pricing and possibilities.

If you want to take a look at the Microsoft Fabric pricing models, you can find an overview via the following link: Microsoft Fabric – Pricing | Microsoft Azure

To avoid any surprises and to be as cost-effective as possible, I created an easy Python script that I can use to pause and start my Microsoft Fabric capacity, or better said resume and suspend.

I highly recommend this for any organization that does not need 24/7 uptime for Fabric capacity. If you run your system 12 hours a day instead of 24, it takes your F64 capacity from $8k a month to $4k.

Comments closed

Lakehouse Table Partitioning in Microsoft Fabric

Gilbert Quevauvilliers performs a split:

When loading data, it is always important to load the data with performance and scalability in mind.

For lakehouse tables to return queries quickly and to scale it is essential to load your lakehouse tables with partitions.

What I am going to show you in my blog post today is how to load data into a Lakehouse table where the table will be automatically partitioned by Year/Month/Day.

Click through for the example.

Comments closed

Microsoft Fabric Lakehouse Ingesting CSV vs SQL

Reitse Eskens performs a comparison:

This blog will be a quite short one compared to the other blogs as it’s more of an overview to show you the capacity of Fabric ingesting CSV files in their native format into a Lakehouse and ingesting SQL data into a table structure inside the Lakehouse. Simple, straightforward stuff without any form of modification. You could call it bronze, raw, ingestion, temp or whatever your preferred naming convention is.

Why is this important? Well, we still have source systems that can only output to files. Just as we still have customers running on SQL Server 2000, legacy or even antique systems are still running. And it’s important to know how much capacity you use when just ingesting data without any modification.

Read on for the two scenarios, giving you an idea of which one is faster. I’d be interested in a third option, which is reading from Parquet files. My initial expectation would be that it would be even faster and more efficient, depending on the structure of the data.

Comments closed

Microsoft Fabric Warehouse Access Control

Koen Verbeeck talks permissions:

We are starting a new analytics project in Microsoft Fabric, and our data will land in a warehouse. This is the first time we’re using Fabric, and we are wondering about the different options for sharing access to a warehouse we developed in a workspace.

Click through for more information on providing and limiting access to data in a Microsoft Fabric warehouse.

Comments closed

Deploying a Power BI Project File via Azure DevOps

Angela Henry deploys to prod:

When it was announced there was a collective cheer from Power BI source control advocates heard ’round the world. Since it’s preview release, Microsoft has also added GIT integration with Fabric workspaces. This makes it so easy to incorporate source control for all (or almost all) of your Fabric artifacts, including Power BI.

But what happens when your organization already has a mature CI/CD process in place using Azure DevOps? Do you really want to break from that pattern and have it controlled somewhere else? That’s what this post is about, using Azure DevOps CI/CD pipelines to deploy your Power BI Project files (.pbip).

I’m going to share my experience in hopes that it will save you some time if this is the route you need to take.

Read on for Angela’s experience. Note that this applies both to Microsoft Fabric as well as a Fabric-less Power BI.

Comments closed

Configuring Microsoft Fabric Data Mirroring for Snowflake

Koen Verbeeck copies some data:

We have a couple of Snowflake databases and would like to have that data available in Microsoft Fabric as well. Is there an easy solution to get the data quickly in Fabric? We don’t have many technical people on staff, so writing complex ETL is not an option.

Read on for more information on how it works. Mind you, you’re probably still writing the T and some of the L after using mirroring.

Comments closed