Press "Enter" to skip to content

Category: Locks, Blocks, and Deadlocks

NOLOCK, No Problem?

Arun Sirpal explains that NOLOCK not only takes locks, but also lets you read invalid data:

A Sch-S (schema stability) lock is taken.  This is a lightweight lock; the only lock that can conflict with this is a Sch-m (schema modification) lock. (C = Conflict). This means that a NOLOCK can actually block for example against an ALTER TABLE command.

I would lean heavily toward turning on Read Committed Snapshot Isolation instead of using NOLOCK in most environments.  It’s something you’d need to test, but it does come with fewer bad ramifications.

Comments closed

Locks In Sp_configure

Kendra Little discusses the locks entry in sp_configure:

Each lock uses 96 bytes of memory. On the instance in question, 25,000 locks  = 2,400,000 bytes.

That’s only 2.3 MB of memory devoted to locks. Even though 25K  sounds like a lot, the memory footprint for that is pretty darn small.

I checked back with our questioner, and their instance has 32GB of memory. That’s a pretty small amount in the grand scheme of things (as of SQL Server 2014, Standard Edition can use up to 128GB of memory for the Buffer Pool), but 2.3 MB isn’t anything to worry about, percentage wise.

Read on for advice if you’re seeing your SQL Server instance take a very large number of locks.

Comments closed

Wait Stats

David Alcock provides an introduction to wait stats and why they’re useful for performance tuning:

So here are two different ways that we can use SQL Servers wait statistics for troubleshooting purposes. Both views give us really useful information but both have different purposes. If we wanted to look back over time then the sys.dm_os_wait_stats will give us a view of wait time totals. Typically we would capture the information via a scheduled job and analyse the data for spikes during periods where issues might be suspected.

For performing real-time analysis of wait statistics then we should base queries on the sys.dm_os_waiting_tasks view where we can see accurate wait duration values as they are happening within our instance.

In my opinion wait statistics are the most important piece of information when troubleshooting SQL Server so learning about the different types is vital for anyone using SQL. Thankfully there is a wealth of really useful information about wait statistics out there; I’ve listed some of my favourite posts below.

Click through for an example, as well as links to more resources.

Comments closed

Page And Key WaitResources For Deadlocks

Kendra Little explains page and key information in deadlock graphs and blocking chains:

1.4) Can I see the data on the page that was locked?

Well, yes. But … do you really need to?

This is slow even on small tables. But it’s kinda fun, so… since you read this far… let’s talk about %%physloc%%!

%%physloc%% is an undocumented piece of magic that will return the physical record locator for every row. You can  use %%physloc%% with sys.fn_PhysLocFormatter in SQL Server 2008 and higher.

This was a very interesting read; check it out.

Comments closed

Range Lock Deadlocks

Dmitri Korotkevitch looks at one scenario in which range locks can cause deadlocking:

The range locks are usually acquired only in SERIALIZABLE isolation level; however, there is another, pretty much undocumented case, when SQL Server can use those locks. It happens even in READ UNCOMMITTED and READ COMMITTED SNAPSHOT modes when you havenonclustered indexes that have IGNORE_DUP_KEY=ON option. In that case rows with the duplicated index keys would not raise an error but rather being ignored. SQL Server would not insert then into the table.

This behavior leads to very hard to explain cases of blocking and even deadlocks in the system. Let’s look at the example and create the table with a few rows as shown below. As you see, nonclustered index on the table has IGNORE_DUP_KEY option enabled.

This is an interesting risk when using IGNORE_DUP_KEY.

Comments closed

Blocking Notifications

Kendra Little shows how to set up blocking and deadlock notifications using base SQL Server components:

OK, we’ve got notifications. We need SQL Server to give us more information on who is involved in the blocking.

I like to use the built-in Blocked Process Report for this. This has been in SQL Server for a long time, and it’s extremely useful.

The Blocked Process Report shows you the “input buffer” of the commands involved – it may be partial information and not the full text of the query. It will also show you the login name for who is running what, and the type of lock requests involved.

You don’t have to spend extra money to get good diagnostic information, at least about these items.

Comments closed

Automating Deadlock Execution Plan Collection

Michael J. Swart comes up with a system to collect execution plans at the time of a deadlock and log them to a table for further research:

So How Do I Get To The Execution Plans?
So when I look at a deadlock graph, I can see there are sql_handles. Given that, I can grab the plan_handle and then the query plan from the cache, but I’m going to need to collect it automatically at the time the deadlock is generated. So I’m going to need

  • XML shredding skills

  • Ability to navigate DMVs to get at the cached query plans

  • A way to programatically respond to deadlock graph events (like an XE handler or a trigger)

If you don’t have the funding to get a third-party tool in place which collects this information, this could be a good fit.

Comments closed

Deadlocks In Apache Ignite

Prachi Garg discusses Deadlock-Free Transactions in Apache Ignite:

When transactions in Ignite are performed with concurrency mode -OPTIMISTIC and isolation level -SERIALIZABLE, locks are acquired during transaction commit with an additional check allowing Ignite to avoid deadlocks. This also prevents cache entries from being locked for extended periods and avoids “freezing” of the whole cluster, thus providing high throughput. Furthermore, during commit, if Ignite detects a read/write conflict or a lock conflict between multiple transactions, only one transaction is allowed to commit. All other conflicting transactions are rolled back and an exception is thrown, as explained in the section below.

This sounds pretty similar to how SQL Server’s In-Memory OLTP works.

Comments closed

Analysis Services Locking And Blocking

Bill Anton shows how to figure out if your Analysis Services performance problem is due to locks:

This past weekend, after one of my presentations on Analysis Services at SQL Saturday 520, an attendee described a performance issue in his environment that he thought could be related to locking and blocking and asked if there was a way to confirm if this was the cause. The short answer is yes, absolutely!

While I wouldn’t say this is a common issue across *all* analysis services environments, it’s definitely common amongst the subset of analysis services environments that do intra-day processing – which is when the SSAS database is being processed during hours of the day when users might be simultaneously querying it.

This is a very interesting article.  I’d never thought about SSAS taking locks, but it makes perfect sense.

Comments closed