Press "Enter" to skip to content

Category: Cloud

Moving Data from Confluent Cloud to Cosmos DB

Nathan Ham announces the Azure Cosmos DB sink connector in Confluent Cloud:

Today, Confluent is announcing the general availability (GA) of the fully managed Azure Cosmos DB Sink Connector within Confluent Cloud. Now, with just a few simple clicks, you can link the power of Apache Kafka® together with Azure Cosmos DB to set your data in motion.

Click through for a marketing-heavy look at how this works.

Comments closed

Tips for Azure Site Recovery

Joey D’Antoni shares a few experiences when using Azure Site Recovery:

I need to blog more. Stupid being busy. Anyway, last week, we were doing a small scale test for a customer, and it didn’t work the way we were expecting, and for one of the dumbest reasons I’ve ever seen. If you aren’t familiar with Azure Site Recovery it provides disk level replication for VMs, and allows you to bring on-premises VMs online in Azure, or in another Azure region, if you VMs are in Azure already. It’s not an ideal solution for busy SQL Server VMs with extremely low recovery point objectives, however, if you need a simple DR solution for a group of VMs, and can sustain around 30 minutes of data loss, it is cheap and easy. The other benefit that ASR provides, similar to VMware’s Site Recovery Manager, is the ability to do a test recovery in a bubble environment.

Read on for notes from Joey.

Comments closed

Importing SQL Server Extended Properties into Azure Purview

Daniel Janik shows how you can use PyApacheAtlas to move specific SQL Server extended properties into Azure Purview:

This post is going to be restricted to only SQL Server Table Columns and only Extended Properties named MS_Description. Quite a few years ago I worked on a data catalog project where we added descriptions for many of the tables, views, and columns to the database using extended properties named MS_Description. Let’s assume you have some of these for this post keeping in mind that the Purview APIs provide so many functions beyond what this post covers and that the code here could be modified to do so much more as well.

Starting out I thought it would be great to import the sensitivity classifications that SSMS creates. Pre-SQL 2019 these were held in Extended Properties and now have their very own DMV (sys.sensitivity_classifications). While this sounded great in theory it wasn’t as exciting when I wrote the code. This is because Azure Purview already has system classifications at a more granular scale for each of the ones you find in SSMS and Purview also adds these as it executes a scan on the data source. It does a pretty good job too. With that said, I shifted my focus to adding descriptions instead.

Read on to see how you can do this.

Comments closed

Scaling ADF and Synapse Analytics Pipelines

Paul Andrew has a process for us:

Back in May 2020 I wrote a blog post about ‘When You Should Use Multiple Azure Data Factory’s‘. Following on from this post with a full year+ now passed and having implemented many more data platform solutions for some crazy massive (technical term) enterprise customers I’ve been reflecting on these scenario’s. Specifically considering:

– The use of having multiple regional Data Factory instances and integration runtime services.

– The decoupling of wider orchestration processes from workers.

Furthermore, to supplement this understanding and for added context, in December 2020 I wrote about Data Factory Activity Concurrency Limits – What Happens Next? and Pipelines – Understanding Internal vs External Activities. Both of which now add to a much clearer picture regarding the ability to scale pipelines for the purposes of large-scale extraction and transformation processes.

Read on for details about the scenario, as well as a design pattern to explain the process. This is a large solution for a large-scale problem.

Comments closed

Deploying Custom Docker Images in Azure ML

Tsuyoshi Matsuzaki shows us how to deploy an Azure ML model via custom Docker image:

In my early post, I have showed you how to bring your own custom docker image in training with Azure Machine Learning.
On the contrary, here I’ll show you how to bring custom docker image in model deployment.

In Azure Machine Learning, the base docker image in deployment includes the inferencing assets, such as, Flask server, etc. So you should use AML compliant image for base image, even when you use your own custom docker image.
The list of these maintained AML images is available in https://github.com/Azure/AzureML-Containers .

Read on for an example.

Comments closed

Deploying Datasets in Azure Analysis Services and Power BI PPU

Gilbert Quevauvilliers continues a series on migrating from Azure Analysis Services to Power BI Premium Per User:

Welcome to part 8, where in this blog post, I am going compare deploying datasets.

For those people who are not exactly sure what deployments are, what this means is when you are using Power BI Desktop and you click on Publish, you are effectively deploying your changes to the Power BI Service (Which could also be a server in the cloud).

In this blog post I will show the differences when completing a deployment from AAS and then PPU.

Read on to see several techniques for deploying for each technology.

Comments closed

An Overview of Amazon Athena

Aveek Das takes us through the basics of Amazon Athena:

Serverless. Since Amazon Athena is offered as a fully managed cloud service, customers do not need to take the pain of installing and maintaining separate infrastructures for this. You can start by logging into the AWS Web console and proceeded to Amazon Athena.

Pay Per Query. You only pay for queries you execute. This is very cost-effective, as you can easily figure out your monthly expenses based on your usage pattern. On average, users pay 5 USD for each terabyte of data scanned. This can be further optimized by creating partitions or compressing your dataset.

Interactive Performance. We do not need to worry about the resources that work behind the scenes. When a query is executed, Athena automatically runs the query in parallel across multiple resources, bringing the results faster.

Read on to see an example of Athena in action.

Comments closed

Azure Functions and (Lack of) F# Support

Jamie Dixon has a shaggy dog tale:

When Azure Functions first came out, F# had pretty good support – templates, the ability to run a .fsx file, cool examples written by Don… Fast forward to 2021 and we have bupkis. I recently wrote a dictionary of amino acid weights that would be perfect as a service: pass in a kmer length and weight, get all hits from amino acids.

I first attempted to create a function app, select a .fsx template, and write the code in my browser. Alas, only .csx scripting is available.

Not to be too cutesy about it, but it would be nice if the product which allows for the execution of functions in a cloud service would support the .NET language which most explicitly embraces the notion of functions. If you feel similarly, there is an open feedback ticket.

Comments closed

Getting Started with Citus on Azure

Gauri Mahajan sets up Azure Database for PostgresSQL and picks the really expensive version:

PostgreSQL is an open-source and one of the most popular relational databases that are typically used for OLTP systems. One important feature of this database is that it’s supported by a large community, and with it comes several extensions that can be applied on the PostgreSQL server to use it for a variety of different applications. Examples of such extensions are AppOS, HypoPG, OpenFTS, PostGIS, TimescaleDB (PostgreSQL for time-series), etc.

One such PostgreSQL extension is Citus – which transforms PostgreSQL into a distributed database that enables usage of Postgres in a scale-out or cluster model. With Citus, the PostgreSQL server can be used for high transaction throughputs, processing time-series or IoT data, building analytical warehouses as well as for real-time analytics. Managing such dynamic infrastructure on which PostgreSQL, as well as Citus extension operates, can be quite challenging. Azure recently launched the Citus flavor of PostgreSQL in the form of Azure Database for PostgreSQL – Hyperscale server group. This can be compared to the likes of Azure Synapse or AWS Redshift. In this article, we will learn how to deploy the Hyperscale server group of the Azure Database for PostgreSQL and explore its configuration options.

Read on for setup instructions, as well as some of the benefits you get by using the Citus extension.

Comments closed

Unique Resource Names and Azure

Meagan Longoria gives us a warning:

Each resource type in Azure has a naming scope within which the resource name must be unique. For PaaS resources such as Azure SQL Server (server for Azure SQL DB) and Azure Data Factory, the name must be globally unique within the resource type. This means that you can’t have two data factories with the same name, but you can have a data factory and a SQL server with the same name. Virtual machine names must be unique within the resource group. Azure Storage accounts must be globally unique. Azure SQL Databases should be unique within the server.

Since Azure allows you to create a data factory and a SQL server with the same resource name, you may think this is fine. But you may want to avoid this, especially if you plan on using system-defined managed identities or using Azure PowerShell/CLI. And if you aren’t planning on using these things, you might want to reconsider.

Click through for a demonstration of how you might get into trouble with this.

Comments closed