Press "Enter" to skip to content

Category: Cloud

Azure Functions and (Lack of) F# Support

Jamie Dixon has a shaggy dog tale:

When Azure Functions first came out, F# had pretty good support – templates, the ability to run a .fsx file, cool examples written by Don… Fast forward to 2021 and we have bupkis. I recently wrote a dictionary of amino acid weights that would be perfect as a service: pass in a kmer length and weight, get all hits from amino acids.

I first attempted to create a function app, select a .fsx template, and write the code in my browser. Alas, only .csx scripting is available.

Not to be too cutesy about it, but it would be nice if the product which allows for the execution of functions in a cloud service would support the .NET language which most explicitly embraces the notion of functions. If you feel similarly, there is an open feedback ticket.

Comments closed

Getting Started with Citus on Azure

Gauri Mahajan sets up Azure Database for PostgresSQL and picks the really expensive version:

PostgreSQL is an open-source and one of the most popular relational databases that are typically used for OLTP systems. One important feature of this database is that it’s supported by a large community, and with it comes several extensions that can be applied on the PostgreSQL server to use it for a variety of different applications. Examples of such extensions are AppOS, HypoPG, OpenFTS, PostGIS, TimescaleDB (PostgreSQL for time-series), etc.

One such PostgreSQL extension is Citus – which transforms PostgreSQL into a distributed database that enables usage of Postgres in a scale-out or cluster model. With Citus, the PostgreSQL server can be used for high transaction throughputs, processing time-series or IoT data, building analytical warehouses as well as for real-time analytics. Managing such dynamic infrastructure on which PostgreSQL, as well as Citus extension operates, can be quite challenging. Azure recently launched the Citus flavor of PostgreSQL in the form of Azure Database for PostgreSQL – Hyperscale server group. This can be compared to the likes of Azure Synapse or AWS Redshift. In this article, we will learn how to deploy the Hyperscale server group of the Azure Database for PostgreSQL and explore its configuration options.

Read on for setup instructions, as well as some of the benefits you get by using the Citus extension.

Comments closed

Unique Resource Names and Azure

Meagan Longoria gives us a warning:

Each resource type in Azure has a naming scope within which the resource name must be unique. For PaaS resources such as Azure SQL Server (server for Azure SQL DB) and Azure Data Factory, the name must be globally unique within the resource type. This means that you can’t have two data factories with the same name, but you can have a data factory and a SQL server with the same name. Virtual machine names must be unique within the resource group. Azure Storage accounts must be globally unique. Azure SQL Databases should be unique within the server.

Since Azure allows you to create a data factory and a SQL server with the same resource name, you may think this is fine. But you may want to avoid this, especially if you plan on using system-defined managed identities or using Azure PowerShell/CLI. And if you aren’t planning on using these things, you might want to reconsider.

Click through for a demonstration of how you might get into trouble with this.

Comments closed

Azure Test Plan Terminology

Kevin Chant is here with a language lesson:

In this post I want to cover some Azure Test Plans jargon for Data Platform professionals. Because I understand it can be confusing.

In addition, I did say I would explain some jargon in my last post about using Azure Test Plans for Data Platform deployments. Of course, these explanations will help with other kinds of deployments as well as Data Platform ones.

By the end of this post, you will have a better understanding of some of the jargon involved in Azure Test Plans. Plus, a good recommendation of a lab to use.

Click through for that depiction.

Comments closed

Connecting to Azure Blob Storage from Power BI

Kristyna Hughes links Power BI to a data source:

The step-by-step process below walks through connecting to data housed in Azure Blob Storage from Power BI using a SAS token. There are many ways to grab your data from Blob Storage, but this is the most efficient, scalable, and secure way that I found (with some security restrictions from watchful DBAs).

Click through for the solution, which is based on using SAS tokens.

Comments closed

Deploying Azure Policies via Terraform

Jonathan D’Aloia shows how you can use Terraform to work with Azure Policies:

As you may all know Terraform serves a great purpose in deploying resources and infrastructure into your Azure environment, however, Terraform can also be used to automate and consistently deploy Azure Policies which can be defined prior to any resources being generated. In this blog, I will cover how you can import policies into your Terraform State to then deploy into an Azure Resource Group in order to secure your landing zone prior to deploying any resources.

Click through for an example.

Comments closed

Querying Private Blob Storage Containers with Azure Synapse Analytics

Dennes Torres looks at some private information:

The queries from the previous article were made against the public container in the blob storage. However, if the container is private, you will need to authenticate with the container. In this article, you’ll learn how to query private blob storage with SQL.

NOTE: Be sure that the Azure Synapse Workspace and the storage account with the sample files are set up before following along with this article. You will also need to replace your storage account URL each time that a storage account URL is used in the article.

There are three possible authentication methods, and these methods may have some variation according to the type of storage account and the access configuration. I will not dig into details about storage here and leave that for a future article.

Read on for the three authorization methods and a lot of detail on using SAS tokens (the preferred method) to access this data.

Comments closed

Combining Change Data Capture with Azure Data Factory

Reitse Eskens continues a series on learning Azure Data Factory:

In my last blog, I pulled all the data from my table to my datalake storage. But, when data changes, I don’t want to perform a full load every time. Because it’s a lot of data, it takes time and somewhere down the line I’ll have to separate the changed rows from the identical ones. Instead of doing full loads every night or day or hour, I want to use a delta load. My pipeline should transfer only the new and changed rows. Very recently, Azure SQL DB finally added the option to enable Change Data Capture. This means after a full load, I can get the changed records only. And with changed records, it means the new ones, the updated ones and the deleted ones.

Let’s find out how that works.

Read on for the article and demonstration.

Comments closed

Differences in Logging between Azure Analysis Services and Power BI PPU

Gilbert Quevauvilliers continues a series on migrating from Azure Analysis Services to Power BI Premium Per User:

Another important aspect when having datasets is being able to log and monitor performance. In this blog post I am going to compare the logging between Azure Analysis Services (AAS) and Power BI Premium Per User (PPU).

With the recent release of PPU having integration with Log Analytics it makes it a lot easier to compare the logging options between AAS and PPU.

This is an area where there’s still a bit of a gap. Click through to see what the differences look like today.

Comments closed

A Primer on Azure Kubernetes Service

Arun Sirpal gives us a brief introduction of Azure Kubernetes Service:

You have the ability to run these on-premises (complex) or in a cloud service, like AWS or Azure. Hence AKS – Azure Kubernetes Service which helps reduce the complexity and operational overhead of managing Kubernetes by offloading much of that responsibility to Microsoft. You may be wondering how does containers relate to this? It was something on my mind when I first entered into this technology. Remember that containers is the next step beyond traditional virtualisation, you can run SQL Server Linux in containers, as an example. I then look at AKS as the “management” layer of the container solution, carrying out tasks such as scheduling, scaling, health, load balancing and host management.

Click through for more information.

Comments closed