Press "Enter" to skip to content

Category: Cloud

Azure Data Lake Updates

Saveen Reddy points out a few updates to Azure Data Lake Store & the Azure Data Lake Analytics portal:

Use Custom Delimeters when Previewing Files

Previously, we had supported comma, colon, space, tab, ampersand, and bar delimiters. With the many different kinds of files used in Azure Data Lake Store and Azure Storage, we’ve added a “Custom” delimiter options for you to define your own delimiter.

To change the delimiter on the Azure Portal:

  1. Open the file you want to preview using Data Explorer.

  2. Click on Format

  3. Under Delimiter, click the dropdown and change it to Custom

  4. A new Custom Delimiter field will appear, type in your delimiter here

  5. Click OK

Read on for more updates.

Comments closed

Starting Azure Stream Analytics Jobs From Code

Hylke Peek wants to kick off an Azure Stream Analytics job from a Universal Windows Platform application:

I had one of those feelings while working with Azure Stream Analytics (ASA). My solution worked but there was one ‘elementary and simple’ thing I wanted: Start the ASA-jobs within my C#-code. That shouldn’t be hard and there’s some documentation. But no, I needed to combine several opposed solutions to a new one to make it possible.

In this post I shortly explain how you can start ASA-jobs within your C# UWP application:

  • I explain which components you have in the authentication process and which parameters you need.

  • Example code is provided. You only need to enter your parameter values.

Click through for the code.

Comments closed

Hadoop’s S3 Support

Steve Loughran and Sanjay Radia give us a history lesson on Hadoop’s support for Amazon S3:

Hadoop’s ability to work with Amazon S3 storage goes back to 2006 and the issue HADOOP-574, “FileSystem implementation for Amazon S3”. This filesystem client, “s3://” implemented an inode-style filesystem atop S3: it could support bigger files than S3 could then support, some its operations (directory rename and delete) were fast. The s3 filesystem allowed Hadoop to be run in Amazon’s EMR infrastructure, using S3 as the persistent store of work. This piece of open source code predated Amazon’s release of EMR, “Elastic MapReduce” by over two years. It’s also notable as the piece of work which gained Tom White, author of “Hadoop, the Definitive Guide”, committer status.

It’s interesting to see how this project has matured over the past decade.

Comments closed

Kafka Plus Spark Streaming

Prasad Alle shows how to integrate Kafka with Spark Streaming on AWS:

Stream processing walkthrough

The entire pattern can be implemented in a few simple steps:

  1. Set up Kafka on AWS.

  2. Spin up an EMR 5.0 cluster with Hadoop, Hive, and Spark.

  3. Create a Kafka topic.

  4. Run the Spark Streaming app to process clickstream events.

  5. Use the Kafka producer app to publish clickstream events into Kafka topic.

  6. Explore clickstream events data with SparkSQL.

This is a pretty easy-to-follow walkthrough with some good tips at the end.

Comments closed

SKLearn To Azure ML

David Crook shows how to build a model using Python’s SciKit library and then operationalize it in Azure ML:

Why Model Outside Azure ML?

Sometimes you run into things like various limitations, speed, data size or perhaps you just iterate better on your own workstation.  I find myself significantly faster on my workstation or in a jupyter notebook that lives on a big ol’ server doing my experiments.  Modelling outside Azure ML allows me to use the full capabilities of whatever infrastructure and framework I want for training.

So Why Operationalize with Azure ML?

AzureML has several benefits such as auto-scale, token generation, high speed python execution modules, api versioning, sharing, tight PaaS integration with things like Stream Analytics among many other things.  This really does make life easier for me.  Sure I can deploy a flask app via docker somewhere, but then, I need to worry about things like load balancing, and then security and I really just don’t want to do that.  I want to build a model, deploy it, and move to the next one.  My value is A.I. not web management, so the more time I spend delivering my value, the more impactful I can be.

Read the whole thing.

Comments closed

Cortana Intelligence Solutions

James Serra gives an introductory walkthrough to Cortana Intelligence Solutions:

Cortana Intelligence Solutions is a new tool just released in public preview that enables users to rapidly discover, easily provision, quickly experiment with, and jumpstart production grade analytical solutions using the Cortana Intelligence Suite (CIS).  It does so using preconfigured solutions, reference architectures and design patterns (I’ll just call all these solutions “patterns” for short).  At the heart of each Cortana Intelligence Solution pattern is one or more ARM Templates which describe the Azure resources to be provisioned in the user’s Azure subscription.  Cortana Intelligence Solution patterns can be complex with multiple ARM templates, interspersed with custom tasks (Web Jobs) and/or manual steps (such as Power BI authorization in Stream Analytics job outputs).

So instead of having to manually go to the Azure web portal and provision many sources, these patterns will do it for you automatically.  Think of a pattern as a way to accelerate the process of building an end-to-end demo on top of CIS.  A deployed solution will provision your subscription with necessary CIS components (i.e. Event Hub, Stream Analytics, HDInsight, Data Factory, Machine Learning, etc.) and build the relationships between them.

James also walks through an entire solution, so check it out.

Comments closed

Using Xgboost In Azure ML Studio

Koos van Strien wants to use the xgboost model in Azure ML Studio:

Because the high-level path of bringing trained R models from the local R environment towards the cloud Azure ML is almost identical to the Python one I showed two weeks ago, I use the same four steps to guide you through the process:

  1. Export the trained model

  2. Zip the exported files

  3. Upload to the Azure ML environment

  4. Embed in your Azure ML solution

Read the whole thing.

Comments closed

SQL Server Configuration Section On Azure VM

Jack Li diagnoses an issue in which the SQL Server Configuration section of an Azure Virtual Machine only appeared under certain circumstances:

If you created an SQL Server VM via azure portal, there will be a section called “SQL Server Configuration” which was introduced via blog “Introducing a simplified configuration experience for SQL Server in Azure Virtual Machines”. Here is a screenshot of that setting.  It allows you to configure various things like auto backup, patching or storage etc.

I got a customer who created a SQL VM via powershell.  But that VM doesn’t have the section “SQL Server Configuration”.   Using his powershell script, I was able to reproduce the behavior.  When I created via portal UI, I got the “SQL Server Configuration”.

Read on for the solution.

Comments closed

SSRS Express And Azure Limitations

William Assaf points out that SQL Server Reporting Services Express Edition cannot connect to Azure SQL Database:

Express editions of SQL Server Reporting Service, from SQL 2016 on down, cannot connect to Azure SQL Databases. Turns out, getting something for free does have some significant limitations.

For example, you’ll see an error message “The Report Server has encountered a configuration error” on a data source page, when creating a new SSRS data source in the Report Manager website. What you may have not noticed on this page was the possible values in the Data Source Type drop down list.

This is an important limitation if you were thinking of living on the free tier of SSRS.

Comments closed

XGBoost

Koos van Strien moves from Python to R to run an xgboost algorithm:

Note that the parameters of xgboost used here fall in three categories:

  • General parameters

    • nthread (number of threads used, here 8 = the number of cores in my laptop)
  • Booster parameters

    • max.depth (of tree)
    • eta
  • Learning task parameters

    • objective: type of learning task (softmax for multiclass classification)
    • num_class: needed for the “softmax” algorithm: how many classes to predict?
  • Command Line Parameters

    • nround: number of rounds for boosting

Read the whole thing.

Comments closed