Press "Enter" to skip to content

Category: Cloud

Jupyter On ElasticMapReduce

Tom Zeng shows howt o install Jupyter Notebooks on Amazon’s ElasticMapReduce:

By default (with no --password and --port arguments), Jupyter will run on port 8888 with no password protection; JupyterHub will run on port 8000.  The --port and --jupyterhub-port arguments can be used to override the default ports to avoid conflicts with other applications.

The --r option installs the IRKernel for R. It also installs SparkR and sparklyr for R, so make sure Spark is one of the selected EMR applications to be installed. You’ll need the Spark application if you use the --toree argument.

If you used --jupyterhub, use Linux users to sign in to JupyterHub. (Be sure to create passwords for the Linux users first.)  hadoop, the default admin user for JupyterHub, can be used to set up other users. The –password option sets the password for Jupyter and for the hadoop user for JupyterHub.

Installation is fairly straightforward, and they include a series of samples you can get to try out Jupyter.

Comments closed

Linux Data Science Virtual Machine

David Smith mentions the Linux data science virtual machine on Azure:

The Linux Data Science Virtual Machine includes all of the tools a modern data scientist needs, in one easy-to-launch package. With it, you can try exploring data with Apache Drill, train deep neural networks for computer vision with MXNet, develop AI applications with the Cognitive Toolkit, or create statistical models with big data in R with Microsoft R Server 9.0.

They also offer a free trial, so check it out.

Comments closed

Azure Management Using R

Alan Weaver introduces AzureSMR:

The AzureSMR functions currently addresses the following Azure Services:

  • Azure Blob: List, Read and Write to Blob Services

  • Azure Resources: List, Create and Delete Azure Resource. Deploy ARM templates.

  • Azure VM: List, Start and Stop Azure VMs

  • Azure HDI: List and Scale Azure HDInsight Clusters

  • Azure Hive: Run Hive queries against a HDInsight Cluster

  • Azure Spark: List and create Spark jobs/Sessions against a HDInsight Cluster(Livy)

This can be useful for cases like when you need to ramp up the Spark cluster before running a particularly compute-intensive process.

Comments closed

Understanding Data Gateways

James Serra walks us through the different data gateways available in Azure:

On-premises data gateway: Formally called the enterprise version.  Multiple users can share and reuse a gateway in this mode.  This gateway can be used by Power BI, PowerApps, Microsoft Flow or Azure Logic Apps.  For Power BI, this includes support for both scheduled refresh and DirectQuery.  To add a data source such as SQL Server that can be used by the gateway, check out Manage your data source – SQL Server.  To connect the gateway to your Power BI, you will sign in to Power BI after you install it (see On-premises data gateway in-depth).

Click through for more details on additional gateways.

Comments closed

Debugging Spark In HDInsight

Sajib Mahmood gives various methods for debugging Spark applications running on an HDInsight cluster:

Spark Application Master

To access Spark UI for the running application and get more detailed information on its execution use the Application Master link and navigate through different tabs containing more information on jobs, stages, executors and so on.

These methods also apply for on-prem Spark clusters, although the resource locations might be a little different.

Comments closed

Understanding Azure SQL Elastic Pool

Vincent-Philippe Lauzon explains how SQL Elastic Pools work and why we might want to use them in Azure:

Along came Elastic Pool.  Interestingly, Elastic Pools brought back the notion of a centralized compute shared across databases.  Unlike on premise SQL Server on premise though, that compute doesn’t sit with the server itself but with a new resource called an elastic pool.

This allows us to provision certain compute, i.e. DTUs, to a pool and share it across many databases.

His example is using a large number of small databases, where the total load is never the sum of individual expected loads.  Another reason to use a pool is for cross-database queries in Azure.

Comments closed

Deploying VMs To Azure Using Powershell

Rob Sewell shows how to use Powershell to create your own Azure VM instance of the Microsoft data science virtual machine:

First, an annoyance. To be able to deploy Data Science virtual machines in Azure programmatically  you first have to login to the portal and click some buttons.

In the Portal click new and then marketplace and then search for data science. Choose the Windows Data Science Machine and under the blue Create button you will see a link which says “Want to deploy programmatically? Get started” Clicking this will lead to the following blade.

Click through for a screenshot-laden explanation which leaves you with a working VM in Azure.

Comments closed

Taxi Rides And Amazon Athena

Mark Litwintschik looks at using Amazon Athena to process the New York City taxi rides data set:

It’s important to note that Athena is not a general purpose database. Under the hood is Presto, a query execution engine that runs on top of the Hadoop stack. Athena’s purpose is to ask questions rather than insert records quickly or update random records with low latency.

That being said, Presto’s performance, given it can work on some of the world’s largest datasets, is impressive. Presto is used daily by analysts at Facebook on their multi-petabyte data warehouse so the fact that such a powerful tool is available via a simple web interface with no servers to manage is pretty amazing to say the least.

Athena is Amazon’s response to Azure Data Lake Analytics.  Check out Mark’s blog post for a good way of getting started with Athena.

Comments closed

Locking Azure Resources

Arun Sirpal explains how to lock resources in Azure:

There are 2 types of lock resources in Azure.

  • Delete – Obviously you can’t delete but you can read / modify a resource, this applies to authorised users.
  • ReadOnly – Authorised users can read a resource but they cannot edit or delete it.

For this blog post I create a delete lock on one of my SQL Databases.

My overly simplistic advice:  lock any production resource which you wouldn’t want accidentally deleted.  It won’t prevent a malicious user from doing something catastrophic, but it can prevent the “Oops, I meant to click the thing above this” class of mistake.

Comments closed

Streaming Data With Kinesis

Asaaf Mentzer shows how to join streaming data (specifically, AWS Kinesis) with lookup data:

In this use case, Amazon Kinesis Analytics can be used to define a reference data input on S3, and use S3 for enriching a streaming data source.

For example, bike share systems around the world can publish data files about available bikes and docks, at each station, in real time.  On bike-share system data feeds that follow the General Bikeshare Feed Specification (GBFS), there is a reference dataset that contains a static list of all stations, their capacities, and locations.

There are three different architectures in here, so if you’re looking for streaming data models with Kinesis (or want to apply them to Kafka), this is a solid read.

Comments closed