Press "Enter" to skip to content

Category: Cloud

Build and Deploy SSIS Projects with Azure DevOps

Joost van Rossum has a pair of posts on Azure DevOps updates. First, Azure DevOps supports building SSIS projects:

This new task is much easier to use than the PowerShell code and also easier than most of the third party tasks. With a little practice you can now easily create a build task under two minutes which is probably faster than the build itself.

If your build fails with the following error message then you are probably using a custom task or component (like Blob Storage Download Task). These tasks are not installed on the build agents hosted by Microsoft. The solution is to use a self hosted agent where you can install all custom components

Second, Azure DevOps supports deploying SSIS projects:

Microsoft just released the SSIS Deploy task (public preview) which makes it much easier to deploy an SSIS project. Below you will find the codeless steps to deploy artifacts created by the SSIS Build task.

Click through for the step-by-step instructions for each.

Comments closed

Azure Data Factory Pipelines

Cathrine Wilhelmsen continues a series on Azure Data Factory with a discussion of pipelines:

Pipelines are sorted by name, so I recommend that you decide on a naming convention early in your project. And yeah, I keep saying this to everyone else, but then I can never decide on how to name my own pipelines, haha 🙂 Don’t worry if you end up renaming your pipelines several times while you work on your project. It happens, and that’s completely fine, but try to stick to some kind of naming convention throughout your project.

In addition to naming conventions, you can create folders to organize your pipelines. Click the actions ellipsis next to the pipelines group, then click new folder.

Read on for more.

Comments closed

Azure Data Factory Components and Copy Data Wizard

Cathrine Wilhelmsen continues a series on Azure Data Factory. First, we get an overview of the available components:

Pipelines are the things you execute or run in Azure Data Factory, similar to packages in SQL Server Integration Services (SSIS). This is where you define your workflow: what you want to do and in which order. For example, a pipeline can first copy data from an on-premises data center to Azure Data Lake Storage, and then transform the data from Azure Data Lake Storage into Azure Synapse Analytics (previously Azure SQL Data Warehouse).

Then, Cathrine looks at the Copy Data wizard:

LEGO! Yay! I love LEGO. Rebrickable is an online service that will show you which LEGO sets you can build from the sets and parts you already own. Fun! 🙂

They also have a database of all official LEGO sets and parts (including themes and colors) that you can download for free as CSV files or JSON files.

The CSV files are automatically generated at the start of each month and can be found on rebrickable.com/downloads

Cathrine takes this LEGO data and feeds it into Azure Data Lake Storage.

Comments closed

Incremental Data Moves to Azure Blob Storage

Ginger Daniel continues a series on moving data incrementally from SQL Server to Azure Blob Storage:

In Part 1 of this series, we demonstrated how to copy a full SQL database table from a SQL Server database into an Azure Blob Storage account as a csv file.  My client needed data moved from their on premise SQL Server database to Azure, and then needed the daily incremental data changes uploaded as well.  This article will discuss how to upload the incremental data changes to Azure after the initial data load.

Click through for the process.

Comments closed

Changes to EC2 Metadata Service

Praveen Sripati takes a look at changes to the AWS EC2 Instance Metadata Service following attacks against Capital One and dozens of other organizations:

Captial One Bank (1) and 30 different organizations were hacked around end of July, I have written a blog (1) around the same time on how to recreate the hack in your own AWS account and also a few mitigations around the same. Now, AWS has made a few changes to the AWS EC2 Instance Metadata Service (IMDS) around the same (12). AWS re:Invent 2019 session (1) around the same has also been planned on December 5th, 2019. Will update with the link once the recording of the session has been uploaded.

The old/existing approach is called IMDSv1 and the new one IMDSv2. Although IMDSv1 solves a few problems like not storing the access keys on the EC2, it bought its own headaches which lead to the hacks.

Click through to see what these problems were and how they led to IMDSv2.

Comments closed

Creating an Azure Data Factory

Cathrine Wilhelmsen continues a series on Azure Data Factory:

In the introduction to Azure Data Factory, we learned a little bit about the history of Azure Data Factory and what you can use it for. In this post, we will be creating an Azure Data Factory and getting familiar with the user interface.

Spoiler alert! Creating an Azure Data Factory is a fairly quick click-click-click process, and you’re done. But! Before you can do that, you need an Azure Subscription, and the right permissions on that subscription. Let’s get that sorted out first.

This post is all about setup and getting an overview of the ADF canvas.

Comments closed

Common Mistakes When Moving to the Cloud

Dave Wentzel takes us through common issues companies experience when adopting a cloud provider:

Don’t make these mistakes:

– Don’t try to use pricing calculators and expect their answers to be close to what your actual spend will be. Cloud expenses are buried everywhere. Instead, have a rough budget to move ONE app to the cloud. Migrate it. Wait a month and examine the bill. What line items were you NOT expecting to see? Is data egress higher than you thought? That’s common. Now, how can you creatively fix that?

– PaaS is never cheaper, at least initially. I call this The PaaS Tax. It will cost you more to use PaaS than to run the same workload in IaaS. Initially. Remember, the paradigm is different from “datacenter” to “cloud”. PaaS becomes cheaper when you leverage PaaS scaling. Since you can’t really scale something like SQL Server in your data center, most people forget this. But in the cloud you can scale down your SQL Server when it is lightly used. That’s how you save money.

Click through for the full story.

Comments closed

Beginner’s Guide to Azure Data Factory

Cathrine Wilhelmsen has started a new series:

Azure Data Factory = Azure Data Factory v2

This means that today, when I talk about “Azure Data Factory”, I refer to “Azure Data Factory v2” and skip the “v2” part of the name. I mostly pretend that Azure Data Factory v1 doesn’t exist anymore 🙂

That’s something we all do.

This first post is a quick “What is this product?” intro, giving us a basis for later posts.

Comments closed

Bot Framework 101 Notes

Annie Xu has some notes from an introductory course on the Microsoft Bot framework:

Not long ago, I got a chance to learn a Bot 101 lesson from my teammate Wayne Smith. It was a great class because it helped me who is an new learner to understand a lot of key concepts of Microsoft bot. Because it is in an internal meeting and there is no public video released, I wrote some notes below to share with you.

Click through for Annie’s notes and a bunch of links to additional resources.

Comments closed