Press "Enter" to skip to content

Category: Architecture

Concurrency Control in Oracle vs PostgreSQL

Umair Shahid continues a series on migrating from Oracle to PostgreSQL:

Transitioning from Oracle to PostgreSQL can be a transformative experience for database administrators because of the subtle differences between the two technologies. Understanding how the two handle concurrency differently is critical to managing highly concurrent workloads. 

Concurrency control is essential for maintaining data consistency when multiple users access the database simultaneously. Oracle and PostgreSQL take different approaches to concurrency control: Oracle primarily relies on locking and consistent snapshots, while PostgreSQL utilizes a Multi-Version Concurrency Control (MVCC) system.

This article provides an in-depth look at concurrency control in PostgreSQL from an Oracle perspective.

Read on for that comparison.

Leave a Comment

SCD Types in Microsoft Fabric

Kenneth Omorodion reminds us that the Kimball model is still quite valuable:

In modern data warehousing, how we handle updates to dimension tables is crucial. There are several approaches; but the decision often comes down to two primary strategies: Slowly Changing Dimensions (SCD) Type 2 and overwriting tables. Each has its own benefits, use cases, and trade-offs. This tip will explore the two methods and why SCD Type 2 is often a better option in many data warehouse scenarios.

Read on for this overview of the benefits of type-2 slowly changing dimensions, as well as a little bit of coverage of several other types of slowly changing dimensions.

Leave a Comment

A Primer on ACID Properties and Transactions

Joe Celko covers four useful properties of database transactions:

ACID is a cute acronym for AtomicityConsistencyIsolation, and Durability. This is a set of properties we want in transactions in a database. The original work was done by the late Jim Gray, but this acronym is due to Andreas Reuter and Theo Härder at IBM. These four properties as defined by Reuter and Härder are as follows:

Click through for a description of each property, as well as a brief overview of isolation levels.

Comments closed

Solid Practices for Power BI

Paul Turley has the beginnings of a new series:

It’s time for a refresher and reboot on this important topic. Much has changed in the Power BI world, the core design principles remain the same, practices and architecture patterns have evolved over the past few years. Power BI has grown up in the enterprise space and Microsoft Fabric now adds new options and capabilities. Back in 2020, I began writing a series of blog posts titled “Doing Power BI the Right Way” and it has become my mission to evolve and maintain a current collection of the most important best practice recommendations. This has been my passion and topic of several conference talks, user group sessions and a book currently in development for O’Reilly that will help you prepare for the PL-300 Power BI Analyst exam and then guide you apply enterprise best practices in your solutions.

I work with hundreds of consulting clients who go through the same cycles, having the same experiences, facing the same challenges, many making the same mistakes, and many learning some of the same lessons. The purpose of this series is to share those lessons with you.

Click through for the overview, as well as an outline of what Paul will include in this series.

Comments closed

Minimizing Latency in Kafka Streaming Applications using APIs

Abhishek Goswami doesn’t want to slow down the stream:

Kafka is widely adopted for building real-time streaming applications due to its fault tolerance, scalability, and ability to process large volumes of data. However, in general, Kafka streaming consumers work best only in an environment where they do not have to call external APIs or databases. In a situation when a Kafka consumer must make a synchronous database or API call, the latency introduced by network hops or I/O operations adds up and accumulates easily (especially when the streaming pipeline is performing an initial load of a large volume of data before starting CDC). This can significantly slow down the streaming pipeline and result in the blowing of system resources impacting the throughput of the pipeline. In extreme situations, this may even become unsustainable as Kafka consumers may not be able to commit offsets due to increased latency before the next polling call and get continuously rebalanced by the broker, practically not processing anything yet incrementally consuming more system resources as time passes.

This is a real problem faced by many streaming applications. In this article, we’ll explore some effective strategies to minimize latency in Kafka streaming applications where external API or database calls are inevitable. We’ll also compare these strategies with the alternative approach of separating out the parts of the pipeline that require these external interactions into a separate publish/subscribe-based consumer.

Read on to understand the causes of this latency and several patterns you can use to limit it.

Comments closed

A Primer on Medallion Architecture in Microsoft Fabric

Kenneth Omorodion builds a warehouse:

Data warehouses are essential components of modern analytics systems, offering optimized storage and processing capabilities for large volumes of data. When integrated with a Lakehouse architecture, you can combine the best of both worlds—structured, schema-enforced data storage with the flexibility and scalability of data lakes. Microsoft Fabric provides an excellent environment for implementing the Medallion Architecture, a design pattern for building efficient data processing pipelines by layering data into bronze, silver, and gold zones.

Click through for the process.

Comments closed

The Importance of Planning before Power BI Data Modeling

Kelly Broekstra recommends against jumping right in:

Who has been told by a manager or business person to just connect to the source data and start creating a new report? Here is my tip:

DON’T DO IT

All Power BI and Fabric reports must have a semantic model, which Microsoft describes as “a logical description of an analytical domain, with metrics, business-friendly terminology, and representation, to enable deeper analysis.” – Source

Read on to learn why and what you should instead do if you want to have a better long-term experience with Power BI.

Comments closed

Tips for Adopting Microsoft Fabric

Paul Turley shares some thoughts:

Hello, friends. I’ve spent the past few months working with several new Fabric customers who were seeking guidance and recommendations for Fabric architecture decisions. What have we learned about using Fabric in enterprise data settings in the past 11 months? This post covers some of the important decisions points and Fabric solution design patterns.

Much of the industry’s experience with Microsoft Fabric over the past several months has been at a high-level as organizations were dipping their toe in the pool to test the water. So far, our Data & AI team have assisted around 50 clients with Fabric projects of various sizes. We have also implemented a handful of production scale projects with enterprise workloads, comparing notes with community leaders and the product teams who develop the product. What lessons have we learned?

Click through for several bits of high-level architectural guidance intended to make that adoption easier.

Comments closed

Tips for Orchestrating Fabric Notebooks

Stepan Resl talks orchestration:

Let’s start by introducing what orchestration is and why it’s important to talk about shared resources. Orchestration is a discipline focused on managing and coordinating individual items or control elements to collectively manage the flow of our data operations. In the context of Fabric, this involves managing notebooks, dataflows, pipelines, stored procedures, semantic model updates, and many other items, activities, and services that may even be outside of Fabric.

Read on for some of the options, how they work in Microsoft Fabric, and tips for success.

Comments closed

Tablespaces in Oracle and PostgreSQL

Umair Shahid explains how tablespaces work in Oracle and PostgreSQL:

Tablespaces play an important role in database management systems, as they determine where and how database objects like tables and indexes are stored. Both Oracle and PostgreSQL have the concept of tablespaces, but they implement them differently based on the overall architecture of each database.

Oracle’s tablespaces are an integral part of the database that provide various functionalities, including separating data types, managing storage, and optimizing performance. PostgreSQL, on the other hand, takes a more simplified approach, using tablespaces primarily to control where physical files are stored.

This blog aims to provide a comprehensive comparison between Oracle and PostgreSQL tablespaces, covering their architecture, creation, and practical use cases, with the goal of helping DBAs better understand their capabilities and limitations

Read on to learn more about how tablespaces work in each platform and how they differ.

Comments closed