Bala Priya C shares some tips and techniques:
If you’re familiar with machine learning, you know that the training process allows the model to learn the optimal values for the parameters—or model coefficients—that characterize it. But machine learning models also have a set of hyperparameters whose values you should specify when training the model. So how do you find the optimal values for these hyperparameters?
You can use hyperparameter tuning to find the best values for the hyperparameters. By systematically adjusting hyperparameters, you can optimize your models to achieve the best possible results.
This tutorial provides practical tips for effective hyperparameter tuning—starting from building a baseline model to using advanced techniques like Bayesian optimization. Whether you’re new to hyperparameter tuning or looking to refine your approach, these tips will help you build better machine learning models. Let’s get started.
Read on for those techniques. Incidentally, one of my “Old man yells at clouds” takes is that I dislike the existence of hyperparameters and consider them a modeling failure, essentially telling the implementer to do part of the researcher’s work. Knowing that they are necessary to work with for so many algorithms, there’s nothing to do but learn how to work with them effectively, but there’s a feel of outsourcing the hard work to users that I don’t like about the process. For that reason, I have extra respect for algorithms that neither need nor offer hyperparameters.