Topic partitions are the main “unit of parallelism” in Kafka. What’s a unit of parallelism? It’s like having multiple cashiers in the same store instead of one. Multiple purchases can be made at once, which increases the overall amount of purchases made in the same amount of time (this is like throughput). In this case, the cashier is the unit of parallelism.
In Kafka, each partition leader can live on a different broker in a cluster, and a producer can send multiple messages, each with a different destination topic partition; that is, a producer can send them in parallel. While this is the main reason Kafka enables high throughput, compression can also be a tool to help improve throughput and efficiency by reducing network traffic due to smaller messages. A well-executed compression strategy also means better disk utilization in Kafka, since stored messages on disk are smaller.
Click through for the various options and some guidance on using each.
Comments closed