Press "Enter" to skip to content

Custom Model Evaluation Metrics with MLflow

Mark Zhang shows off a new bit of functionality in MLflow:

According to an internal customer survey, 75% of respondents say they frequently or always use specialized, business-focused metrics in addition to basic ones like accuracy and loss. Data scientists often utilize these custom metrics as they are more descriptive of business objectives (e.g. conversion rate), and contain additional heuristics not captured by the model prediction itself.

In this blog, we introduce an easy and convenient way of evaluating MLflow models on user-defined custom metrics. With this functionality, a data scientist can easily incorporate this logic at the model evaluation stage and quickly determine the best-performing model without further downstream analysis

Click through to see how to use built-in metrics but also how to create your own.