Juoko Virtanen walks us through window functions in Spark SQL:
When you think of windows in Spark you might think of Spark Streaming, but windows can be used on regular DataFrames. Window functions calculate an output value for every row of a DataFrame based on a group of rows. I have been working on optimizing some Spark code and have noticed a few places where the use of a window function eliminates the need for a join and speeds up the code. A common pattern where a window can be used to replace a join is when an aggregation is performed on a DataFrame and then the DataFrame resulting from the aggregation is joined to the original DataFrame. Let’s take a look at an example.
Read on for a few examples using the Scala flavor of Spark SQL.