Mohammad Waseem takes us through an overview of Generative Adversarial Networks:
Generative models are nothing but those models that use an Unsupervised Learning approach. In a generative model, there are samples in the data i.e input variables X, but it lacks the output variable Y. We use only the input variables to train the generative model and it recognizes patterns from the input variables to generate an output that is unknown and based on the training data only.
In Supervised Learning, we are more aligned towards creating predictive models from the input variables, this type of modeling is known as discriminative modeling. In a classification problem, the model has to discriminate as to which class the example belongs to. On the other hand, unsupervised models are used to create or generate new examples in the input distribution.
To define generative models in layman’s terms we can say, generative models, are able to generate new examples from the sample that are not only similar to other examples but are indistinguishable as well.
Click through for the overview.