Logistic Regression Defaults and sklearn

Giovanni Lanzani shares some thoughts on scikit-learn defaults for Logistic Regression:

If you read the post, you can see that the biggest problem with the choice is that, unless your data is regularized, you will train a model that probably under performs: you are unnecessarily penalizing it by making it learn less than what it could from the data.

The second problem with the default behavior of LogisticRegression is about choosing a regularization constant that is — in effect — a magic number (equal to 1.0). This hides the fact that the regularization constant should be tuned by hyperparameter search, and not set in advance without knowing how the data and problem looks like.

Knowledge is power. Also read the post Giovanni links to in order to learn more about the issue.

Related Posts

Python and R Data Reshaping

John Mount takes us through a couple of data shaping packages: The advantages of data_algebra and cdata are: – The user specifies their desired transform declaratively by example and in data. What one does is: work an example, and then write down what you want (we have a tutorial on this here).– The transform systems can print what a transform is going to […]

Read More

Develop BDC PySpark Jobs in Visual Studio Code

Jenny Jiang announces a new capability in Visual Studio Code: With the Visual Studio Code extension, you can enjoy native Python programming experiences such as linting, debugging support, language service, and so on. You can run current line, run selected lines of code, or run all for your PY file. You can import and export a .ipynb notebook and perform […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

September 2019
MTWTFSS
« Aug  
 1
2345678
9101112131415
16171819202122
23242526272829
30