Replicating Linear Models

John Mount has an interesting post looking at replicating linear models without training data:

Let’s work an example in R. Suppose we are working with a linear regression model and from our donor system we have extracted the following representation of the model as “intercept” and “betas”.

intercept <- 3 betas <- c(weight = 2, height = 4)

Our goal is to build a linear regression model that has the above coefficients. The way we are going to do this is by building our own synthetic data set such that the regression fit through this data set yields these coefficients.

It’s fairly straightforward to do this for linear models; as things get more complicated, however, the difficulty level spikes.

Related Posts

xgboost and Small Numbers of Subtrees

John Mount covers an interesting issue you can run into when using xgboost: While reading Dr. Nina Zumel’s excellent note on bias in common ensemble methods, I ran the examples to see the effects she described (and I think it is very important that she is establishing the issue, prior to discussing mitigation).In doing that I ran into one more […]

Read More

Reinforcement Learning with R

Holger von Jouanne-Diedrich takes us through concepts in reinforcement learning: At the core this can be stated as the problem a gambler has who wants to play a one-armed bandit: if there are several machines with different winning probabilities (a so-called multi-armed bandit problem) the question the gambler faces is: which machine to play? He could “exploit” one […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.


July 2019
« Jun