Pandas Multiindex and T-SQL

Tomaz Kastrun explains why you should never cross the streams:

1. SQL Server and Python Pandas Indexes are two different worlds and should not be mixed.
2. SQL Server uses Index primarily for DML operations and to keep data ACID.
3. Python Pandas uses Index and MultiIndex for keeping data dimensionality when performing data wrangling and statistical analysis.
4. SQL Server Index and Python Pandas Index don’t know about each other’s existence, meaning if user want to propagate the T-SQL index to Python Pandas (in order to minimize the impact of duplicates, missing values or to impose the relational model), it needs to be introduced and created, once data enters “in the python world”.

Read on for additional conclusions and the demos which bring us here.

Related Posts

A Quick Keras Example

Shubham Dangare takes us through a quick example using Keras and TensorFlow in Python: Keras is a high-level neural networks API, written in Python and capable of running on top of Tensorflow, CNTK  or Theano. It was developed with a focus on enabling fast experimentation. In this blog, we are going to cover one small […]

Read More

ML Services and Injectable Code

Grant Fritchey looks at sp_execute_external_script for potential SQL injection vulnerabilities: The sharp eyed will see that the data set is defined by SQL. So, does that suffer from injection attacks? Short answer is no. If there was more than one result set within the Python code, it’s going to error out. So you’re protected there. […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

June 2019
MTWTFSS
« May Jul »
 12
3456789
10111213141516
17181920212223
24252627282930