When Not to Use Spark

Ramandeep Kaur gives us several cases when it makes sense not to use Apache Spark:

There can be use cases where Spark would be the inevitable choice. Spark considered being an excellent tool for use cases like ETL of a large amount of a dataset, analyzing a large set of data files, Machine learning, and data science to a large dataset, connecting BI/Visualization tools, etc.
But its no panacea, right?

Let’s consider the cases where using Spark would be no less than a nightmare.

No tool is perfect at everything. Click through for a few use cases where the Spark experience degrades quickly.

Related Posts

Hooking SQL Server to Kafka

Niels Berglund has an interesting scenario for us: We see how the procedure in Code Snippet 2 takes relevant gameplay details and inserts them into the dbo.tb_GamePlay table. In our scenario, we want to stream the individual gameplay events, but we cannot alter the services which generate the gameplay. We instead decide to generate the event from the database […]

Read More

Notebooks in Azure Databricks

Brad Llewellyn takes us through Azure Databricks notebooks: Azure Databricks Notebooks support four programming languages, Python, Scala, SQL and R.  However, selecting a language in this drop-down doesn’t limit us to only using that language.  Instead, it makes the default language of the notebook.  Every code block in the notebook is run independently and we […]

Read More

Categories

June 2019
MTWTFSS
« May Jul »
 12
3456789
10111213141516
17181920212223
24252627282930