Monte Carlo Simulation in Python

Kristian Larsen has a couple of posts on Monte Carlo style simulation in Python. First up is a post which covers how to generate data from different distributions:

One method that is very useful for data scientist/data analysts in order to validate methods or data is Monte Carlo simulation. In this article, you learn how to do a Monte Carlo simulation in Python. Furthermore, you learn how to make different Statistical probability distributions in Python.

You can also bootstrap your data, reusing data points when building a set of samples:

A useful method for data scientists/data analysts in order to validate methods or data is Bootstrap with Monte Carlo simulation In this article, you learn how to do a Bootstrap with Monte Carlo simulation in Python.

Both posts are worth the read.

Related Posts

Linear Regression Assumptions

Stephanie Glen has a chart which explains the four key assumptions behind when Ordinary Least Squares is the Best Linear Unbiased Estimator: If any of the main assumptions of linear regression are violated, any results or forecasts that you glean from your data will be extremely biased, inefficient or misleading. Navigating all of the different assumptions […]

Read More

Hyperparameter Tuning with MLflow

Joseph Bradley shows how you can perform hyperparameter tuning of an MLlib model with MLflow: Apache Spark MLlib users often tune hyperparameters using MLlib’s built-in tools CrossValidator and TrainValidationSplit.  These use grid search to try out a user-specified set of hyperparameter values; see the Spark docs on tuning for more info. Databricks Runtime 5.3 and 5.3 ML and above support […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

June 2019
MTWTFSS
« May  
 12
3456789
10111213141516
17181920212223
24252627282930