Predicting Intermittent Demand

Bruno Rodrigues shows one technique for forecasting intermittent data:

Now, it is clear that this will be tricky to forecast. There is no discernible pattern, no trend, no seasonality… nothing that would make it “easy” for a model to learn how to forecast such data.

This is typical intermittent demand data. Specific methods have been developed to forecast such data, the most well-known being Croston, as detailed in this paper. A function to estimate such models is available in the {tsintermittent} package, written by Nikolaos Kourentzes who also wrote another package, {nnfor}, which uses Neural Networks to forecast time series data. I am going to use both to try to forecast the intermittent demand for the {RDieHarder} package for the year 2019.

Read the whole thing. H/T R-Bloggers

Related Posts

Python versus R (Again)

Alex Woodie looks at whether Python is dominating R in the data science space: There is some evidence that Python’s popularity is hurting R usage. According to the TIOBE Index, Python is currently the third most popular language in the world, behind perennial heavyweights Java and C. From August 2018 to August 2019, Python usage surged […]

Read More

Z-Tests vs T-Tests

Stephanie Glen has a picture which explains the difference between a Z-test and a T-test: The following picture shows the differences between the Z Test and T Test. Not sure which one to use? Find out more here: T-Score vs. Z-Score. Click through for the picture.

Read More

Categories

June 2019
MTWTFSS
« May Jul »
 12
3456789
10111213141516
17181920212223
24252627282930