Predicting Database Growth

James Livingston uses linear regression to plot database growth over time:

Utilizing the equation for a line, instead of solving for y we will solve for x, where:
– x corresponds to the day we will hit capacity based on current growth rate
– y corresponds to drive capacity in GB
– m is the slope of our regression line, provided by the model via lm.coef_
– b is the intercept of the regression line, also provided by the model via lm.intercept_

Click through for an example. This is one of the areas where DBAs can gain a lot by learning a bit of data science.

Related Posts

Polishing Uncalibrated Models

Nina Zumel takes an uncalibrated random forest model and applies a calibration technique to improve the estimate on one variable: In the previous article in this series, we showed that common ensemble models like random forest and gradient boosting are uncalibrated: they are not guaranteed to estimate aggregates or rollups of the data in an unbiased way. […]

Read More

Comparing Classification Model Quality

Stephanie Glen looks at ways to compare model evaluation for classification models: In part 1, I compared a few model evaluation techniques that fall under the umbrella of ‘general statistical tools and tests’. Here in Part 2 I compare three of the more popular model evaluation techniques for classification and clustering: confusion matrix, gain and lift chart, […]

Read More

Categories

April 2019
MTWTFSS
« Mar May »
1234567
891011121314
15161718192021
22232425262728
2930