Dependencies as Risks

Kevin Feasel



John Mount makes the point that packages dependencies are innately a risk:

If your software or research depends on many complex and changing packages, you have no way to establish your work is correct. This is because to establish the correctness of your work, you would need to also establish the correctness of all of the dependencies. This is worse than having non-reproducible research, as your work may have in fact been wrong even the first time.

Low dependencies and low complexity dependencies can also be wrong, but in this case there at least exists the possibility of checking things or running down and fixing issues.

There are some insightful comments on this post as well, so check those out. This is definitely an area where there are trade-offs, so trying to reason through when to move in which direction is important.

Related Posts

From Excel to R: Three Examples

Abdul Majed Raja has a few examples of things which are easy to do in Excel and how you can do them in R: Create a difference variable between the current value and the next valueThis is also known as lead and lag – especially in a time series dataset this varaible becomes very important in feature engineering. In […]

Read More

Calculating AUC in R

Andrew Treadway shows how you can calculate Area Under the Curve in R: AUC is an important metric in machine learning for classification. It is often used as a measure of a model’s performance. In effect, AUC is a measure between 0 and 1 of a model’s performance that rank-orders predictions from a model. For […]

Read More


March 2019
« Feb Apr »