Sqoop From MySQL To Cloudera

Alan Choi and Laurel Hale show us how to use Sqoop to migrate data from MySQL into Impala:

The basic import steps described for tiny tables applies to importing bigger tables into Impala. The difference occurs when you construct your sqoop import command. For large tables, you want it to run fast, so setting parallelism to 1, which specifies one map task during the import won’t work well. Instead, using the default parallelism setting, which is 4 map tasks to import in parallel, is a good place to start. So you don’t need to specify a value for the -m option unless you want to increase the number of parallel map tasks.
Another difference is that bigger tables usually have a primary key, which become good candidates where you can split the data without skewing it. The tiny_table we imported earlier doesn’t have a primary key. Also note that the -e option for the sqoop import command, which instructs Sqoop to import the data returned for the specified SQL statement doesn’t work if you split data on a string column. If stringcolumns are used to split the data with the -e option, it generates incompatible SQL. So if you decide to split data on the primary key for your bigger table, make sure the primary key is on a column of a numeric data type, such as int, which works best with the -e option because it generates compatible SQL.

Read the whole thing. Sqoop has been around for a while because it does its job well.

Related Posts

Tips For Using PolyBase With Cloudera QuickStart VM

I have a post on using Cloudera’s QuickStart VM with PolyBase: Here’s something which tripped me up a little bit while connecting to Cloudera using SQL Server. The data node name, instead of being quickstart.cloudera like the host name, is actually localhost. You can change this in /etc/cloudera-scm-agent/config.ini. Because PolyBase needs to have direct access to the data nodes, […]

Read More

Bayesian Modeling Of Hardware Failure Rates

Sean Owen shows how you can use Bayesian statistical approaches with Spark Streaming, using the example of hard drive failure rates: This data doesn’t arrive all at once, in reality. It arrives in a stream, and so it’s natural to run these kind of queries continuously. This is simple with Apache Spark’s Structured Streaming, and proceeds […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

February 2019
MTWTFSS
« Jan  
 123
45678910
11121314151617
18192021222324
25262728