An Explanation Of Convolutional Neural Networks

Shirin Glander explains some of the mechanics behind Convolutional Neural Networks:

Convolutional Neural Nets are usually abbreviated either CNNs or ConvNets. They are a specific type of neural network that has very particular differences compared to MLPs. Basically, you can think of CNNs as working similarly to the receptive fields of photoreceptors in the human eye. Receptive fields in our eyes are small connected areas on the retina where groups of many photo-receptors stimulate much fewer ganglion cells. Thus, each ganglion cell can be stimulated by a large number of receptors, so that a complex input is condensed into a compressed output before it is further processed in the brain.

If you’re interested in understanding why a CNN will classify the way it does, chapter 5 of Deep Learning with R is a great reference.

Related Posts

Naive Bays in R

Zulaikha Lateef takes us through the Naive Bayes algorithm and implementations in R: Naive Bayes is a Supervised Machine Learning algorithm based on the Bayes Theorem that is used to solve classification problems by following a probabilistic approach. It is based on the idea that the predictor variables in a Machine Learning model are independent of […]

Read More

Exporting Data from Power Query with R

Leila Etaati shows how you can use R to export data from Power Query to disk or to SQL Server: There is always a discussion on how to store back the data from Power BI to local computer or SQL Server Databases, in this short blog, I will show how to do it by writing […]

Read More


January 2019
« Dec Feb »