Parallel Processing With The Pool Object In Python

Kevin Feasel

2018-12-27

Python

Sanjay Kumar takes us through parallel processing in Python:

The parallel processing holds two varieties of execution: Synchronous and Asynchronous.
In synchronous execution, once a process starts execution, it puts a lock over the main program until its get accomplished.
While the asynchronous execution doesn’t require locking, it performs a task quickly but the outcome can be in the rearranged order.

Click through for a few examples using Pool.

Related Posts

An Explanation Of Convolutional Neural Networks

Shirin Glander explains some of the mechanics behind Convolutional Neural Networks: Convolutional Neural Nets are usually abbreviated either CNNs or ConvNets. They are a specific type of neural network that has very particular differences compared to MLPs. Basically, you can think of CNNs as working similarly to the receptive fields of photoreceptors in the human eye. Receptive fields in our […]

Read More

Auto ML With SQL Server 2019 Big Data Clusters

Marco Inchiosa has a model scenario for using Big Data Clusters to scale out a machine learning problem: H2O provides popular open source software for data science and machine learning on big data, including Apache SparkTM integration. It provides two open source python AutoML classes: h2o.automl.H2OAutoML and pysparkling.ml.H2OAutoML. Both APIs use the same underlying algorithm implementations, […]

Read More

Categories

December 2018
MTWTFSS
« Nov Jan »
 12
3456789
10111213141516
17181920212223
24252627282930
31